DOI: https://doi.org/10.21829/myb.2013.192342

Variation throughout the tree stem in the physical-mechanical properties of the wood

Beatriz González-Rodrigo, Luis G. Esteban, Paloma Palacios, Francisco García-Fernández, Antonio Guindeo

Resumen


This study analyses the variation of main physical-mechanical properties of wood along the longitudinal and radial directions of the tree for Abies alba Mill. growing in the Spanish Pyrenees. Small
clear specimens were used to study the properties of volumetric shrinkage (VS), density (ρ), hardness (H), bending strength (MOR), modulus of elasticity (MOE), maximum compressive strength parallel to the grain (MCS) and impact strength (K). Several models of properties variation in the longitudinal and radial directions were analyzed. Main trends of variation of properties throughout the tree stem were identified although none of them could be fitted to predictive statistical models. Along the longitudinal direction, the properties studied followed a downward trend from the base to the crown, which was not significant in all cases, indicating that no differences in quality existed. Throughout the radial direction
the trend is upward for the first 40-50 growth rings, after which it slopes downwards, more gently at first until rings 70-75 and then more steeply. This behaviour is related to variation in wood structure from the pith to the bark, depending on whether the wood is juvenile, sapwood or heartwood, and to wood maturity
and microfibril angle. Authors encourage carrying further studies on other populations of A. alba in the Spanish Pyrenees to check if the trends found in this study apply to other provenances.


Palabras clave


Fir, longitudinal direction, mechanical properties, physical properties, radial direction

Texto completo:

PDF

Referencias


Anon, J. 1961. Forest Products Laboratory’s

toughness testing machine. Forest

Products Laboratory Report No. 1308.

Forest Products Laboratory, Madison

(WI), USA. 29 pp.

AENOR (Asociación Española de Normalización).

a. UNE 56531. Características

físico-mecánicas de la madera. Determinación

del peso específico. Madrid.

AENOR (Asociación Española de Normalización).

b. UNE 56533. Características

físico-mecánicas de la

madera. Determinación de las contracciones

lineal y volumétrica.

Madrid.

AENOR (Asociación Española de Normalización).

c. UNE 56534. Características

físico-mecánicas de la

madera. Determinación de la dureza.

Madrid.

AENOR (Asociación Española de Normalización).

d. UNE 56536. Características

físico-mecánicas de la

madera. Determinación de la resistencia

a la flexión dinámica. Madrid.

AENOR (Asociación Española de Normalización).

e. UNE 56535. Características

físico-mecánicas de la

madera. Determinación de la resistencia

a la compresión axial. Madrid.

AENOR (Asociación Española de Normalización).

UNE 56528. Características

físico-mecánicas de la

madera. Preparación de probetas

para ensayos. Madrid.

AENOR (Asociación Española de Normalización).

UNE 56537. Características

físico-mecánicas de la

madera. Determinación de la resistencia

a la flexión estática. Madrid.

AENOR (Asociación Española de Normalización).

UNE-EN 13183-1.

Contenido de humedad de una pieza

de madera aserrada. Parte 1: Determinación

por el método de secado en

estufa. Madrid. (+ERRATUM: 2003,

+AC: 2004).

AENOR (Asociación Española de Normalización).

UNE EN ISO/IEC

Evaluación de la conformidad.

Requisitos generales para la

competencia de los laboratorios de

ensayo y de calibración. Madrid. (+

ERRATUM: 2006).

Bamber, R.K. and J. Burley. 1983. The

wood properties of radiata pine.

Commonwealth Agricultural Bureaux,

Slough, USA. 84 p.

Bao, F.C., Z.H. Jiang, X.M. Jiang, X.X. Lu,

X.Q. Luo and S.Y. Zhang, 2001. Differences

in wood properties between

juvenile wood and mature wood in 10

species grown in China. Wood

Science and Technology 35:363-375.

Barnett, J.R. and V.A. Bonham. 2004.

Cellulose microfibril angle in the cell

wall of wood fibres. Biological

Reviews 79:461-472.

Barrett, J.D. and R.M. Kellogg. 1991. Bending

strength and stiffness of secondgrowth

Douglas-fir dimension lumber.

Forest Products Journal 41:35-43.

Beaulieu, J., S.Y. Zhang, Q.B. Yu and A.

Rainville. 2006. Comparison between

genetic and environmental influences

on lumber bending properties in

young white spruce. Wood and Fiber

Science 38:553-564.

Bendtsen, B.A. 1978. Properties of wood

from improved and intensively managed

trees. Forest Products Journal

:61-72.

Bendtsen, B.A. and J. Senft, 1986. Mechanical

and anatomical properties in

individual growth rings of plantationgrown

eastern cottonwood and loblolly-

pine. Wood and Fiber Science

:23-38.

Brown, G.A., 1972. A statistical analysis of

density variation in Pinus caribaea

Morelet grown in Jamaica. Proc. Selection

breeding to improve some tropical

conifers. Commonwealth Forestry Institute.

Gainesville (FL). p:70-85.

Brown, H.P., A.J. Panshin and C.C. Forsaith.

Textbook of wood technology:

the physical, mechanical and

chemical properties of the commercial

woods of the United States.

Vol.2. McGraw-Hill, New York. 783 p.

Castéra, P., G. Nepveu and G. Chantre,

Principaux facteurs de contrôle

de la variabilité du bois chez le pin

maritime (Pinus pinaster Ait.). Proc. V

Colloque ARBORA. Association pour la

Recherche sur la Production Forestière

et le Bois en Région Aquitaine.

Bordeaux, France, Dec 2-3. p:91-101.

Choong, E.T. and P.J. Fogg. 1989. Differences

in moisture content and

shrinkage between innerwood and

outerwood of 2 shortleaf pine trees.

Forest Products Journal 39:13-18.

De Palacios, P., L.G. Esteban, F. García

Fernández and A. Guindeo, 2006.

Determination of the bending and

compression strength of Spanish fir

wood. Proc. The 5th International

Symposium Wood Structure and Properties

‘06. Arbora Publishers. Sliač -

Sielnica, Slovakia, Sept 3-6.

p:203-206.

De Palacios, P., L.G. Esteban, A. Guindeo,

F. García Fernández, A. Fernández

Canteli and N. Navarro. 2008. Variation

of impact bending in the wood of

Pinus sylvestris L. in relation to its

position in the tree. Forest Products

Journal 58:55-60.

Deresse, T., R.K. Shepard and S.M. Shaler.

Microfibril angle variation in

red pine (Pinus resinosa Ait.) and its

relation to the strength and stiffness

of early juvenile wood. Forest Products

Journal 53:34-40.

Dinwoodie, J.M., 1981. Timber: its nature

and behaviour. Van Nostrand Reinhold

Company Ltd., New York. 190 p.

Domec, J.C. and B.L. Gardner. 2002. Ageand

position-related changes in

hydraulic versus mechanical dysfunction

of xylem: inferring the design

criteria for Douglas-fir wood structure.

Tree Physiology 22:91-104.

Esteban, L.G., P. De Palacios, F. García

Fernández and J. Ovies. 2009.

Mechanical Properties of Wood from

the Relict Abies pinsapo Forests.

Forest Products Journal 59:72-78.

Fukazawa, K., 1984. Juvenile wood of

hardwoods judged by density variation.

IAWA Bulletin 5:65-73.

Giménez, A.M. and C.R. López. 2002.

Variación longitudinal de los elementos

del leño en Schinopsis quebracho

colorado (Schelcht.) Baril et Meyer.

Madera y Bosques 8(2):27-38.

Gorisek, Z. and N. Torelli. 1999. Microfibril

angle in juvenile, adult and compression

wood of spruce and silver fir.

Phyton-Ann REI Bot 39:129-132.

Harris, J.M. and B.A. Meylan. 1965.

Influence of microfibril angle on longitudinal

and tangential shrinkage in Pinus

radiata. Holzforschung 19:144-153.

Heger, L., 1974. Longitudinal variation of

specific gravity in stems of black

spruce, balsam fir, and lodgepole

pine. Canadian Journal of Forest

Research 4:321-326.

Hirai, S., 1958. Studies on the weightgrowth

of forest trees (VI): Chamaecyparis

obtusa. Bulletin of the Tokyo

University Forest 54:199-217.

Hui, Z. and Smith I., 1991. Factors influencing

bending properties of white

spruce lumber. Wood and Fiber

Science 23:483-500.

Isebrands, J.G. and C.M. Hunt. 1975.

Growth and wood properties of rapidgrown

Japanese larch. Wood and

Fiber Science 7:119-128.

Ivkovic, M., W.J. Gapare, A. Abarquez, J.

Ilic, M.B. Powell and H.X. Wu, 2009.

Prediction of wood stiffness, strength,

and shrinkage in juvenile wood

of radiata pine. Wood Science and

Technology 43:237-257.

Jayne, B.A., 1958. Effect of site and spacing

on the specific gravity of wood of

plantation-grown red pine. Tappi

:162-166.

Jeffers, J.W., 1959. Regression models of

variation in specific gravity in four provenances

of Sitka spruce. Journal of

the Institute of Wood Science 4:44-59.

Johansson, M. and R. Kliger. 2002.

Influence of material characteristics

on warp in Norway spruce studs.

Wood and Fiber Science 34:325-336.

Kennedy, R.W. 1995. Coniferous wood

quality in the future: concern and

strategies. Wood Science and Technology

:321-338.

Kliger, I.R., M. Perstorper and G. Johansson.

Bending properties of

Norway spruce timber. Comparison

between fast- and slow-grown stands

and influence of radial position of

sawn timber. Annals of Science

Forest 55:349-358.

Krahmer, R.L., 1966. Variation of specific

gravity in Western hemlock trees.

TAPPI 49:227-229.

Kretschmann, D.E. and B.A. Bendtsen,

Ultimate tensile -stress and

modulus of elasticity of fast-grown

plantation loblolly pine lumber. Wood

and Fiber Science 24:189-203.

Larson, P.R., D.E. Kretschmann, A. Clark

III and J.G. Isebrands, 2001. Formation

and properties of juvenile wood

in southern pines: a synopsis. General

Technical Report FPL-GTR-129.

Forest Products Laboratory, Madison

(WI). 42 pp.

Lewark, S. 1979. Wood characteristics in

Norway spruce breeding programs.

Proc. IUFRO Joint Meeting of Working

Parties on Norway spruce Provenance

and Norway Spruce

Breeding. Bucharest, Romania.

p:316-339.

Machado, J.S. and H.P. Cruz. 2005. Within

stem variation of maritime pine timber

mechanical properties. Holz Als

Roh-und Werkstoff 63:154-159.

Martín, S., P. Díaz-Fernández and J. de

Miguel. 1998. Regiones de procedencia

de las especies forestales

españolas. Géneros Abies, Fagus,

Pinus y Quercus. Dirección General

de Conservación de la Naturaleza.

Madrid. 22p.

Mazet, J.F. and G. Nepveu, 1991. Relationships

between wood shrinkage

properties and wood density for

Scots pine, silver fir and Norway

spruce. Annales des Sciences Forestieres

:87-100.

McDonald, S.S., G.B. Williamson, M.C.

Wiemann, 1995. Wood specific-gravity

and anatomy in Heliocarpus

appendiculatus (Tiliaceae). American

Journal of Botany 82:855-861.

McKimmy. M.D. 1959. Factors related to

variation of specific gravity in younggrowth

Douglas-fir. Oregon Forest

Products Research Center Bulletin.

Oregon State University, Corvallis

(OR). 52 p.

Medina, A.A., N.M. Dionisio, L.N. Laffitte,

I.R. Andía y S.M. Rivera. 2013. Variación

radial y axial de longitud de

fibras y elementos de vaso en Nothofagus

nervosa (Nothofagaceae) de la

Patagonia Argentina. Madera y Bosques

(2):7-19.

Megraw, R.A. 1985. Wood quality factors

in loblolly pine. Tappi Press, Atlanta

(GA). 88 p.

Mitchell, H.L. 1963. Specific gravity variation

in North American conifers.

Forest Products Laboratory, Forest

Service, U.S. Department of Agriculture.

Madison (WI) 30 p.

Nicholls, J.W.P., H.E. Dadswell, 1962. Tracheid

length in Pinus radiata D. Don.

Division of Forest Products Technological

Paper No 24. Commonwealth

Scientific and Industrial Research

Organisation, Melbourne, Australia.

p.

Niklas, K.J. 1992. Plant biomechanics: an

engineering approach to plant form

and function. University of Chicago

Press, Chicago (IL). 622 p.

Olesen, P.O. 1978. On cyclophysis and

topophysis. Silvae Genetica 27:173-

Palka, L.C. 1973. Predicting the effect of

specific gravity, moisture content,

temperature and strain rate on elastic

properties of softwoods. Wood

Science and Technology 7: 127-141.

Panshin, A.J. and C. De Zeeuw. 1980.

Textbook of wood technology: structure,

identification, properties, and

uses of the commercial woods of the

United States and Canada. Vol. 1.

th ed. McGraw-Hill Book Co., New

York. 722p.

Passialis, C. and A. Kiriazakos. 2004.

Juvenile and mature wood properties

of naturally-grown fir trees. Holz Als

Roh-und Werkst 62: 476-478.

Pearson, R.G., 1988. Compressive properties

of clear and knotty loblolly

pine juvenile wood. Forest Products

Journal 38:15-22.

Pearson, R.G. and R.C. Gilmore. 1971.

Characterization of the strength of

juvenile wood of loblolly pine (Pinus

taeda L.). Forest Products Journal

:23-30.

Pearson, R.G. and R.C.Gilmore. 1980.

Effect of fast growth-rate on the

mechanical properties of loblolly pine

(Pinus taeda). Forest Products Journal

:47-54.

Pronin, D. 1971. Estimating tree specific

gravity of major pulpwood species of

Wisconsin. Forest Service Research

Paper - FPL 161. Forest Products

Laboratory, Madison (WI). 18 p.

Sanio, K.G. 1872. Ueber die Grösse der

Holzzellen bei der gemeinen Kiefer

(Pinus silvestris). Jahrb Wiss Bot 8,

-420 in ECHOLS R.M., 1955.

Linear relation of fibrillar angle to tracheid

length, and genetic control of

tracheid length in slash pine. Tropical

Woods 102:11-22.

Sinković, T., 1995. Physical properties of

juvenile fir-wood (Abies alba Mill.)

from Gorski Kotar. Drvna Industrija

:115-122.

Taylor, F.W., E.I.C. Wang, A. Yanchuk and

M.M. Micko. 1982. Specific gravity

and tracheid length variation of white

spruce in Alberta. Can Journal of

Forest Research 12:561-566.

Tsehaye, A., A.H. Buchanan and J.C.F.

Walker. 1995. Stiffness and tensile

strength variation within and between

radiata pine trees. Journal of the Institute

of Wood Science 13(5):513-

van Buijtenen, J.P. 1982. Fibers for the

future. Tappi 65:10-12.

Wellwood, R.W. and J. G. H. Smith, 1962.

Variation in some important qualities

of wood from young Douglas fir and

Hemlock trees. Research Paper No.

Faculty of Forestry, University of

British Columbia, Vancouver,

Canada. 15 pp.

Wilcox, W. W. and W. Y. Pong, 1971. The

effects of height, radial position, and

wet wood on white fir wood properties.

Wood and Fiber Science 3:47-55.

Wilson, J. W. and G. Ifju. 1965. Wood characteristics

VII: Intra-increment relationship

of Douglas fir wood density,

tensile strength and stiffness. Woodlands

Research Index No. 170. Pulp

and Paper Research Institute of

Canada, Pointe Claire, Canada. 24 pp.

Yamashita, K., Y. Hirakawa, H. Nakatani

and M. Ikeda. 2009. Tangential and

radial shrinkage variation within trees

in sugi (Cryptomeria japonica) cultivars.

Journal of Wood Science

:161-168.

Yao, J., 1969. Shrinkage properties of

second-growth southern yellow pine.

Wood Science and Technology 3:25-

Zobel, B.J. and J. P. van Buijtenen. 1989.

Wood variation: its causes and control.

Springer Verlag, Berlin, Germany.

p.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2015 Madera y Bosques




Madera y Bosques, Vol. 24, Núm. 1, Primavera 2018, es una publicación cuatrimestral editada por el Instituto de Ecología, A.C. Carretera antigua a Coatepec, 351, Col. El Haya, Xalapa, Ver. C.P. 91070, Tel. (228) 842-1835, http://myb.ojs.inecol.mx/, mabosque@inecol.mx. Editor responsable: Raymundo Dávalos Sotelo. Reserva de Derechos al Uso Exclusivo 04-2016-062312190600-203, ISSN electrónico 2448-7597, ambos otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este Número, Reyna Paula Zárate Morales, Carretera antigua a Coatepec, 351, Col. El Haya, Xalapa, Ver., C.P. 91070, fecha de última modificación, 25 de abril de 2018.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación.

Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

 

Licencia Creative Commons

  Los aspectos éticos relacionados con la publicación de manuscritos en Madera y Bosques se apegan a los establecidos en el COPE.

  Gestionando el conocimiento