DOI: https://doi.org/10.21829/myb.2018.2431666

Modelización y mapeo estacional del índice de área foliar en un bosque tropical seco usando imágenes de satélite de alta resolución

Ana Cristina Nafarrate-Hecht, Juan Manuel Dupuy-Rada, Stephanie P. George-Chacon, José Luis Hernández-Stefanoni

Resumen


El índice de área foliar (IAF) proporciona información acerca de la cantidad de superficie fotosintética que existe en relación con la superficie total del ecosistema y se relaciona con procesos vitales como la fotosíntesis, la respiración y la productividad. Por lo tanto, es importante contar con información sobre la distribución espacial del IAF a escala de paisaje. El método indirecto más utilizado para la estimación del IAF se basa en imágenes de satélite y consiste en asociarlo con características espectrales e índices de vegetación. Sin embargo, estos índices tienen una fuerte limitación debido a problemas de saturación, lo cual restringe la posibilidad de generar mapas precisos de IAF, particularmente en bosques con altos niveles de biomasa. En el presente trabajo se obtuvieron modelos para mapear el IAF en un bosque tropical seco de Yucatán durante las estaciones de lluvia y estiaje a partir de imágenes de alta resolución, utilizando un procedimiento de regresión combinado con kriging. Este procedimiento integra la relación del IAF, tanto con datos espectrales y de textura de las imágenes, como con la dependencia espacial de los residuales. Se obtuvieron valores de IAF por medio de fotografías hemisféricas con una precisión aceptable y valores medios significativamente diferentes entre la temporada de lluvias (3.37) y la de estiaje (2.49). Los valores de R2aj de los modelos de regresión múltiple fueron de 0.58 y 0.63 para la temporada de lluvias y estiaje, respectivamente. En general, los resultados demuestran que, al utilizar el análisis de textura, se pueden generar modelos aceptables para la estimación del IAF en bosques tropicales secos con altos niveles de biomasa.


Palabras clave


datos espectrales; estiaje; índices de vegetación; lluvias; métricas de textura; regresión con kriging

Texto completo:

PDF

Referencias


Aguirre-Salado, C. A., Valdez-Lazalde, J. R., Ángeles-Pérez, G., de los Santos-Posadas, H. M., & Aguirre-Salado, A. I. (2011). Mapeo del índice de área foliar y cobertura arbórea mendiante fotografía hemisférica y datos SPOT 5 HRG: regresión y k-nn. Agrociencia, 45(1), 105-119.

Asner, G. P., Scurlock, J. M., & A Hicke, J. (2003). Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12(3), 191-205. doi 10.1046/j.1466-822X.2003.00026.x

Beckschäfer, P., Seidel, D., Kleinn, C., & Xu, J. (2013). On the exposure of hemispherical photographs in forests. iForest-Biogeosciences and Forestry, 6(4), 228. doi: 10.3832/ifor0957-006

Beckschäfer, P., Fehrmann, L., Harrison, R. D., Xu, J., & Kleinn, C. (2014). Mapping Leaf Area Index in subtropical upland ecosystems using RapidEye imagery and the randomForest algorithm. IForest-Biogeosciences and Forestry, 7(1), 1. doi 10.3832/ifor0968-006

Bréda, N. J. (2003). Ground‐based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403-2417. doi: 10.1093/jxb/erg263

Colombo, R., Bellingeri, D., Fasolini, D., & Marino, C. M. (2003). Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sensing of Environment, 86(1), 120-131. doi: 10.1016/S0034-4257(03)00094-4

Comisión Nacional Forestal [Conafor] (2010). Inventario Nacional Forestal y de Suelos, manual y procedimientos para el muestreo de campo. Remuestreo 2010. Zapopan, Jalisco, México: Conafor.

Comisión Nacional Forestal [Conafor] (2017). Proyecto de fortalecimiento REDD+ y cooperación Sur–Sur. Zapopan, Jalisco, México: Conafor. Recuperado de http://www.conafor.gob.mx/web/temas-forestales/bycc/acciones-de-preparacion-para-redd/proyecto-de-fortalecimiento-redd-y-cooperacion-sur-sur.

Chason, J. W., Baldocchi, D. D., & Huston, M. A. (1991). A comparison of direct and indirect methods for estimating forest canopy leaf area. Agricultural and Forest Meteorology, 57(1-3), 107-128. doi:10.1016/0168-1923(91)90081-Z

Chen, J. M., & Cihlar, J. (1995). Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 777-787. doi: 10.1109/36.387593

Dai, Z., Birdsey, R. A., Johnson, K. D., Dupuy, J. M., Hernandez-Stefanoni, J. L., & Richardson, K. (2014). Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico. Water, Air, & Soil Pollution, 225(4), 1925. doi: 10.1007/s11270-014-1925-x

Dale, M. R. T., & Fortin, M. J. (2002). Spatial autocorrelation and statistical tests in ecology. Ecoscience, 9(2): 162-167. doi: 10.1080/11956860.2002.11682702

Flores, J. S., & Espejel, I. C. (1994). Etnoflora Yucatense. No. 3. Universidad Autónoma de Yucatán, Yucatán, México.

Frazer, G. W., Lertzman, K. P., & Trofymow, J. A. (1997). A method for estimating canopy openness, effective leaf area index, and photosynthetically active photon flux density using hemispherical photography and computerized image analysis techniques (Vol. 373). Victoria, BC: Pacific Forestry Centre.

Gao, X., Huete, A. R., Ni, W., & Miura, T. (2000). Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment, 74(3), 609-620. doi: 10.1016/S0034-4257(00)00150-4

Gao, Y., Giese, M., Brueck, H., Yang, H., & Li, Z. (2013). The relation of biomass production with leaf traits varied under different land-use and precipitation conditions in an Inner Mongolia steppe. Ecological Research, 28(6), 1029-1043. doi: 10.1007/s11284-013-1086-1

Ghassemian, H. (2016). A review of remote sensing image fusion methods. Information Fusion, 32, 75-89. doi: 10.1016/j.inffus.2016.03.003

Gower, S. T., Kucharik, C. J., & Norman, J. M. (1999). Direct and indirect estimation of leaf area index, f APAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70(1), 29-51. doi: 10.1016/S0034-4257(99)00056-5

Gray, J., & Song, C. (2012). Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors. Remote Sensing of Environment, 119, 173-183. doi: 10.1016/j.rse.2011.12.016

GRASS Development Team, (2015). Geographic Resources Analysis Support System (GRASS) Software, Version 7.0. Open Source Geospatial Foundation. Recuperado de http://grass.osgeo.org

Haralick, R. M., & Shanmugam, K. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, (6), 610-621. doi 10.1109/TSMC.1973.4309314

Hernández-Stefanoni, J. L., Gallardo-Cruz, J. A., Meave, J. A., & Dupuy, J. M. (2011). Combining geostatistical models and remotely sensed data to improve tropical tree richness mapping. Ecological Indicators, 11(5), 1046-1056. doi: 10.1016/j.ecolind.2010.11.003

Hernández‐Stefanoni, J. L., Johnson, K. D., Cook, B. D., Dupuy, J. M., Birdsey, R., Peduzzi, A., & Tun‐Dzul, F. (2015). Estimating species richness and biomass of tropical dry forests using LIDAR during leaf‐on and leaf‐off canopy conditions. Applied Vegetation Science, 18(4), 724-732., doi 10.1111/avsc.12190

Jarlan, L., Balsamo, G., Lafont, S., Beljaars, A., Calvet, J. C., & Mougin, E. (2008). Analysis of leaf area index in the ECMWF land surface model and impact on latent heat and carbon fluxes: Application to West Africa. Journal of Geophysical Research: Atmospheres, 113(D24). doi 10.1029/2007JD009370

Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833-3845. doi: 10.1016/j.rse.2008.06.006

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., & Baret, F. (2004). Methods for leaf area index determination. Part I: Theories, techniques and instruments. Agricultural and Forest Meteorology, 121, 19-35. doi: 10.1016/j.agrformet.2003.08.027

Kalácska, M., Calvo-Alvarado, J. C., & Sánchez-Azofeifa, G. A. (2005). Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiology, 25(6), 733-744. doi: 10.1093/treephys/25.6.733

Kalacska, M., Sanchez-Azofeifa, G. A., Rivard, B., Caelli, T., White, H. P., & Calvo-Alvarado, J. C. (2007). Ecological fingerprinting of ecosystem succession: Estimating secondary tropical dry forest structure and diversity using imaging spectroscopy. Remote Sensing of Environment, 108(1), 82-96. doi: 10.1016/j.rse.2006.11.007

Kross, A., McNairn, H., Lapen, D., Sunohara, M., & Champagne, C. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34, 235-248. doi: 10.1016/j.jag.2014.08.002

Liu, Z., Chen, J. M., Jin, G., & Qi, Y. (2015). Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen–deciduous forests. Agricultural and Forest Meteorology, 209, 36-48. doi: 10.1016/j.rse.2013.10.018

Maass, J., Vose, J. M., Swank, W. T., & Martínez-Yrízar, A. (1995). Seasonal changes of leaf area index (LAI) in a tropical deciduous forest in west Mexico. Forest Ecology and Management, 74(1-3), 171-180. doi: 10.1016/0378-1127(94)03485-F

Morisette, J. T., Baret, F., Privette, J. L., Myneni, R. B., Nickeson, J. E., Garrigues, S., & Kalacska, M. (2006). Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1804. doi: 10.1109/TGRS.2006.872529

Nagendra, H. (2001). Using remote sensing to assess biodiversity. International Journal of Remote Sensing, 22(12), 2377-2400. doi: 10.1080/01431160117096

Nafarrate-Hecht A. C. (2017). Estimación directa e indirecta del índice de área foliar (IAF) y su modelación con LiDAR en un bosque tropical seco de Yucatán. Tesis de maestría, Centro de Investigación Científica de Yucatán, A. C., Mérida, Yucatán, México.

Nobis, M., & Hunziker, U. (2005). Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agricultural and Forest Meteorology, 128(3), 243-250. doi: 10.1016/j.agrformet.2004.10.002

Pebesma, E. J., (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30, 683-691.

Pfeffer, K., Pebesma, E. J., & Burrough, P. A. (2003). Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape Ecology, 18(8), 759-776. doi: 10.1023/B:LAND.0000014471.78787.d0

Pu, R., & Cheng, J. (2015). Mapping forest leaf area index using reflectance and textural information derived from WorldView-2 imagery in a mixed natural forest area in Florida, US. International Journal of Applied Earth Observation and Geoinformation, 42, 11-23. doi: 10.1016/j.jag.2015.05.004

Quesada, M., Sánchez-Azofeifa, G. A., Alvarez-Anorve, M., Stoner, K. E., Avila-Cabadilla, L., Calvo-Alvarado, J., & Gamon, J. (2009). Succession and management of tropical dry forests in the Americas: Review and new perspectives. Forest Ecology and Management, 258(6), 1014-1024. doi: 10.1016/j.foreco.2009.06.023

Poorter, L., & Markesteijn, L. (2008). Seedling traits determine drought tolerance of tropical tree species. Biotropica, 40(3), 321-331. doi: 10.1111/j.1744-7429.2007.00380.x

Rich, P. M. (1990). Characterizing plant canopies with hemispherical photographs. Remote Sensing Reviews, 5(1), 13-29. doi: 10.1080/02757259009532119

R Development Core Team (2012). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Recuperado de http://www.Rproject.org

Sasaki, T., Imanishi, J., Ioki, K., Song, Y., & Morimoto, Y. (2016). Estimation of leaf area index and gap fraction in two broad-leaved forests by using small-footprint airborne LiDAR. Landscape and Ecological Engineering, 12(1), 117-127. doi 10.1007/s11355-013-0222-y

Sánchez-Azofeifa, G. A., Quesada, M., Rodríguez, J. P., Nassar, J. M., Stoner, K. E., Castillo, A., Garvin, T., Zent, E. L., Calvo-Alvarado, J. C., Kalacska, M. E.R., Fajardo, L., Gamon, J. A. y Cuevas-Reyes, P. (2005). Research priorities for neotropical dry forests. Biotropica, 37(4), 477-485. doi: 10.1046/j.0950-091x.2001.00153.x-i1

Schleppi, P., Zingg, A., Manetti, M. C., Pelleri, F., Becagli, C., & Conedera, M. (2014). Use of hemispherical photography to quantify changes in leaf area index after thinning of chestnut coppices in Ticino, Switzerland. Document presented in 1st Coppice Conference COST action FP1301–Florence February 26 2014, Poster.

Schlerf, M., Atzberger, C., & Hill, J. (2005). Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, 95(2), 177-194. doi: 10.1016/j.rse.2004.12.016

Song, C. (2013). Optical remote sensing of forest leaf area index and biomass. Progress in Physical Geography, 37(1), 98-113. doi: 10.1177/0309133312471367

Thenkabail, P. S., Enclona, E. A., Ashton, M. S., Legg, C., & De Dieu, M. J. (2004). Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sensing of Environment, 90(1), 23-43. doi: 10.1016/j.rse.2003.11.018

Tillack, A., Clasen, A., Kleinschmit, B., & Förster, M. (2014). Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sensing of Environment, 141, 52-63. doi: 10.1016/j.rse.2013.10.018

Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., & Coppin, P. (2004). Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1), 37-53. doi: 10.1016/j.agrformet.2003.08.001

Webster, R., & Oliver, M. A. (2001). Geostatistics for Environmental Science. Toronto: John Wiley & Sons.

Zhou, J. J., Zhao, Z., Zhao, J., Zhao, Q., Wang, F., & Wang, H. (2014). A comparison of three methods for estimating the LAI of black locust (Robinia pseudoacacia L.) plantations on the Loess Plateau, China. International Journal of Remote Sensing, 35(1), 171-188. doi: 10.1080/01431161.2013.866289


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2018 Madera y Bosques

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.


Madera y Bosques, Vol. 24, Núm. 1, Primavera 2018, es una publicación cuatrimestral editada por el Instituto de Ecología, A.C. Carretera antigua a Coatepec, 351, Col. El Haya, Xalapa, Ver. C.P. 91070, Tel. (228) 842-1835, http://myb.ojs.inecol.mx/, mabosque@inecol.mx. Editor responsable: Raymundo Dávalos Sotelo. Reserva de Derechos al Uso Exclusivo 04-2016-062312190600-203, ISSN electrónico 2448-7597, ambos otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este Número, Reyna Paula Zárate Morales, Carretera antigua a Coatepec, 351, Col. El Haya, Xalapa, Ver., C.P. 91070, fecha de última modificación, 25 de abril de 2018.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación.

Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

 

Licencia Creative Commons

  Los aspectos éticos relacionados con la publicación de manuscritos en Madera y Bosques se apegan a los establecidos en el COPE.

  Gestionando el conocimiento