Costilla-Hermosillo, Ortiz-Morales, Loza-Cornejo, Frausto-Reyes, and Metwally: Laser biostimulation for improving seeds germinative capacity and seedlings growth of Prosopis laevigata and Jacaranda mimosifolia



Introduction

Among physical and chemical methods to improve the effectiveness of germination, laser stimulation has shown positive effects on seeds germination and growth of seedlings of various species (Podleśny, Stochmal, Podleśna, & Misiak, 2012; Jamil et al., 2013; Prośba-Bialczyk et al., 2013). In general, a laser is a device that produces a beam of light with certain optical properties, like intensity, emission wavelength, beam divergence, etc. In plants, laser stimulation is a physical phenomenon based on the ability of cells to absorb and store radiant energy (Gladyszewska, 2011, Sacala, Demczuk, Grzyś, Prosba-Bialczyk, & Szajsner, 2012). The same phenomenon can be observed in the seeds, because they absorb the energy of light to subsequently transform it into chemical energy for use in the growth (Dinoev, Antonov, Stoyanov, & Georgieva, 2004; Chen, Yue, Wang, & Ling, 2005; Chen, Jia, & Yuen 2010; Dziwulska, Wilczec, & Ćwintal et al., 2006). Literature data claim that laser irradiation as a method of pregerminative stimulation of the seed has a positive effect on plant growth and metabolism of many species of commercial interest, as soybean, wheat, maize, radish, tomato, alfalfa, clover, carrots, pea and sugar beet (Rybiński, 2000; Aladjadjiyan, 2007; Benavides, Garnica, Hernández, Fuentes, & Ramírez, 2007; Sujak, Dziwulska-Hunek, & Kornazyński, 2009; Hernández-Aguilar et al., 2010; Gladyszewska, 2011, Sacala et al., 2012). A dose of energy with a red laser (He-Ne) can be used as pregerminative treatment for seeds. This stimulation will rise the energy potential of seeds and improve germination (Truchliński, Wesolowsky, Koper, & Dziamba, 2002; Gladyszewska, 2011). Also, laser irradiation might activate phytochrome which consequently modulates plant response as well as their ability to produce young plants more vigorous in the first stage of its development (Sacala et al., 2012). According to Hernández-Aguilar et al. (2010), the basis of the stimulation mechanism in any plant physiological stage is the synergism between the polarized monochromatic laser beam and the photoreceptors. In this regard, there are three main classes of photoreceptors in plants: phytochromes, sensitive to the red and far-red region of the visible spectrum, cryptochromes in the blue and UV-A region and phototropins (Lariguet & Dunand, 2005; Torres, Huang, Chua, & Bolle, 2006).

A large number of forest species do not germinate because the testa or cover seminal is hard and prevents the entry of water (physical latency), and the seed does not germinate unless it is scarified. “Mezquite” (Prosopis laevigata) generally presents problems with regard to the germination of its seeds in natural conditions, since they have a very hard and impermeable cover that prevents the water from passing through, inhibiting in part the germination, which causes that cover to become a problem when trying to manage the seed for reproductive purposes (Rivas-Medina, González, Valencia, Sánchez, & Villanueva, 2005). Different methods have been used with the purpose to improve mezquite’s seeds germination (D’Aubeterre, Principal, & García, 2002; Rivas-Medina et al., 2005; García-Aguilera, Martínez-Jaime, Torres, & Frías-Hernández, 2000; Pérez-Sánchez, Jurado, Chapa-Vargas, & Flores, 2011; Brandt, Lachmuth, Landsschultz, Hab, & Jensen, 2014). In the case of “jacaranda” (Jacaranda mimosifolia) a deciduous tree, the seeds, also have a hard testa and are inside a fruit or pod with a hard cover that when ripe is dehiscent and releases the seeds. However, the type of fruits and their conservation time affect the germination capacity of the seeds, according to Póvoa (2018), who observed germination results ranged from 11.3% (dark brown old fruits) to 93.5% (light brown, new fruits). Other methods of propagation of Jacaranda mimosifolia include the addition of GA3 to immature seeds of Jacaranda mimosifolia (Miyajima et al., 2005) and thermal treatments to the seeds (Póvoa, 2018). Works on the application of laser and its effect on the germination of this species of Prosopis and other woody species including Jacaranda mimosifolia are lacking.

P. laevigata is a natural resource in the arid and semi-arid areas of the southern part of the USA and central-northern Mexico. P. laevigata not only help to retain water, fix nitrogen (Orozco-Villafuerte, Cruz-Sosa, Ponce-Alquicira & Vernon-Carter, 2003), and store CO2 for long periods (Méndez, Turlan, Ríos, & Nájera, 2012), but also each part of the plant is used as a source for human and animal food. Its pods for example, are consumed fresh, ripe or dried building material (firewood, fodder, coal, manufacture of crafts). P. laevigata also has medicinal properties, its leaves are a source of bioactive phenolic compounds and nutraceutical ingredients with antioxidant capacity and cardioprotection potential (Azero & Andrade, 2006; García-Andrade et al., 2013; Rodríguez-Sauceda, Rojo-Martínez, Ramírez-Valverde, Martinez-Ruiz, Cong-Hermida, Medina-Torres, & Piña-Ruiz, 2014). This species has phytoremediation potential (Buendía-González, Orozco-Villafuerte, Cruz-Sosa, Barrera-Díaz, & Vernon-Carter, 2010), for wastewater treatment (Torres, Carpinteyro-Urban, & Vaca, 2012) and is also employed for charcoal production for domestic consumption and export (Rodríguez-Sauceda et al., 2014; Foroughbakhch et al., 2012, Orozco-Villafuerte et al., 2003; Saucedo-Anaya et al., 2017). Jacaranda mimosifolia is an ornamental species, with medicinal applications (Food and Agriculture Organization of the United Nations [FAO], 2003a, b; López-Franco, Goycoolea, Valdez, & Calderón, 2006; Palacios, 2006; Rojas, Ochoa, Ocampo, & Muñoz, 2006). Jacaranda mimosifolia is used as forest for its wood easy to work and good quality. Its wood is semi-hard, semi-heavy and yellowish-white with soft veining. It is also used for furniture manufacture, interiors of cars, coatings, general carpentry and carving sculptures. Also, the flowers from jacaranda and mezquite are important in the production of honey bee. Prosopis laevigata, for example, represents the most important source of pollen and nectar for pollinators from March to May in some semiarid regions where the trees may represent, 89.9% - 91.2% of the total of Fabaceae species (Valenzuela et al., 2015; Medina-Cuéllar, Tirado-González, Portillo-Vázquez, López-Santiago, & Franco-Olivares, 2018). Mexico is one of the main honey exporters of the world (Secretaría de Agricultura y Desarrollo Rural [Sagarpa], 2015; Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria [Senasica], 2015). On the other hand, Jacaranda mimosifolia is also on the list of important plant species for honey production in other regions of the world (Beyene & Hiwot, 2015).

Although the seeds of Prosopis laevigata are orthodox, they do not present latency, only hard seed coat dormancy, but once the seeds are devoid of the different layers that surround them, the germination appears immediately (Hong, Linington, & Ellis, 1996; Rodríguez-Sauceda et al., 2014). For this reason, Prosopis laevigata seeds usually have problems related to germination under natural conditions, due the presence of a hard and impermeable testa (seed coat) that prevents the passage of water and inhibits germination (Maldonado-Aguirre & De la Garza, 2000; Rivas-Medina et al., 2005). On the other hand, Jacaranda mimosifolia is a species propagated by seed (Socolowski & Massanori, 2004; Li, Zhou, Shi, & Gao, 2012), the seeds also have a hard testa and are inside a fruit or pod with a hard cover that when ripe is dehiscent and releases the seeds. Although their seeds are recalcitrant (germinate immediately), the survival of plants in natural conditions is low due to the dependence of open spaces (Wright et al., 2008). Nevertheless in this species, the speed and percentage of germination of the seeds greatly influences, whether they come from a fresh fruit or with some storage period (Póvoa, 2018). The response of their seeds to alternative treatments for germination stimulation it is unknown.

Objectives

The objective of this investigation was to evaluate the effect of applying He-Ne laser irradiation treatments on seeds of Prosopis laevigata (Humb. et Bonpl. ex Willd) M.C. Johnst, Fabaceae, and Jacaranda mimosifolia D. Don., Bignoniaceae to improve seed germination and shorten the seedling grow time for reforestation purposes.

Materials and methods

In this experiment, seeds of Prosopis laevigata and Jacaranda mimosifolia were collected from mature fruits of 3-6 individuals per species from wild and cultivated populations in Jalisco (21° 31´ N latitude, 101° 41´ W longitude; 1930 m asl), Mexico. The fruits of Prosopis laevigata are linear legumes 7 cm to 20 cm long by 8 mm to 15 mm wide, somewhat constricted between the seeds. Once mature, they have a yellowish-brown color, sometimes reddish. The seeds are oblong, compressed from 8 mm to 10 mm long, with a yellowish-white color, and a hard, waterproof cover. In Jacaranda mimosifolia the fruits are oblong flattened capsules, brown color, with a dry and hard cover. The fruit contains numerous, winged, hyaline or brownish seeds (Gilman & Watson, 1993; Mostafa, Eldahsan & Singab, 2014).To get the seeds, the dissection of the fruits was carried out. The seeds were washed with tap water to remove the remainder of the fruit pulp. Then they were placed in absorbent paper for drying, after this they were stored in paper envelopes under laboratory conditions at a temperature between 20-25 °C to maintain their viability.

For germination experiments, 15 days after collected fruits, the seeds were selected carefully discarding those that showed some visible damage in the testa. Then they were divided into groups of 50 seeds each; seeds with 10 mm ± 0.1 mm in length and 0.6 g ± 0.01 g in weight for Prosopis laevigata, while for Jacaranda mimosifolia, seeds with 7 mm ± 0.1 mm in width and 0.5 g ± 0.01 g in weight were used for germination experiments. A greater number of seeds must be included in germination experiments (International Seed Testing Association [ISTA], 2018); however, in this study it was decided to include three repetitions of 50 seeds each for treatment and control, because only this amount of seeds had the size and weight requirements. In this way, groups of seeds classified as viable, were subjected to treatment with different doses of He-Ne laser irradiation of low intensity (632 nm wavelength, 10 mW, CW) using a laser beam expanded to a size about 2.5 cm in diameter. Five irradiation treatments (30 s, 60 s, 90 s, 120 s, 150 s) and a control (without irradiation) were included.

To obtain the germination percentages, the record of germination was carried out through the count of germinated seeds for each treatment and for each species. The main effects of each treatment that were significant were analyzed with an ANOVA and a multiple comparison test of Tukey (p < 0.05). The statistical analysis was performed with statistical analysis SAS (SAS, 2002). In order to reveal the magnitude of species vs irradiation levels interaction, graphs with the interaction of morphological variables of seedlings and seed germination of all the treatments were obtained. For this purpose the free statistic software Multivariate Factor Analysis-Ungrouped Data version 1.2.1 (Wessa, 2018) was used.

The seedlings coming from both experiments (laser and control) were transferred to greenhouse, transplanted to pots with inert substrate (agrolita-vermiculite-ground potting, mixture 1:1:1), with irrigation (distilled water) to field capacity every two or three days during growth. Also, during initial growth of the seedlings (five days after germination and until 30 days age) a record of morphological characters (total height, root length, basal diameter of the seedling, length and diameter of hypocotyls, length and width of cotyledons) was carried out. For the measurement of morphological variables, a digital caliper Mitutoyo was used. It is known that transitory starch is synthesized in chloroplasts of photosynthetic tissues as one of the primary products of atmospheric CO2 photosynthetic fixation (Weise, van Wijk, & Sharkey, 2011; Pessarakli, 2014). The presence of transitory starch in mesophyll tissue from the leaves, as a main feature to verify existence of photosynthetic activity was analyzed by histochemical tests (López-Curto, Márquez-Guzmán, & Murguía-Sánchez, 2005). A microscope adapted to an image analyzer IMAGE - Pro Plus version 6.1 was used for the observation of starch granules.

Results

Significant statistical differences (p < 0.05), were observed for germination percentages in both species. For Prosopis laevigata, the obtained experimental data demonstrated that the highest percentage of germinated seeds (96%) was obtained from treated seeds with 90 s and 150 s as compared with the control showed a lower germination percentage (26%). The percentage of germinated seeds between treatments and control showed significant statistical differences (p < 0.05), except between treatments 30 s, 60 s, 90 s and 150 s (Fig. 1). The application of treatment 30 s produced a stimulatory effect positive on the growth of the root (54.2 mm, length), which is significantly different (p < 0.05) from the remaining treatments and control (Table 1). The implementation of treatments 60 s and 120 s turned out to be better, they produced the highest values for length and width of cotyledon (8.1 mm and 7.5 mm, respectively) (Table 1). Seedlings from irradiated seeds showed a normal development in the early stage of its growth (Fig. 2A and 2C). Similarly, the presence of starch grains in the mesophyll of the leaves could demonstrate that the cells carried out the photosynthetic function (Fig. 3B).

Figure 1

Germination percentage for Prosopis laevigata seeds biostimulated with different He-Ne laser treatments.

2448-7597-mb-25-02-e2521665-gf1.jpg

The bars represent the mean ± standard deviation. Different letters on the bars indicate significant statistical differences (Tukey, p < 0.005).

Table 1

Morphological characters of Prosopis laevigata seedlings registered with the application of different laser He-Ne treatments and the control (without irradiation).

Treatments Root Length Hypocotyl Diameter Hypocotyl Length Cotyledon Length Cotyledon Width
Control 21.3 ± 0.005 F 0.42 ± 0.006 E 26.2 ± 0.006 F 5.3 ± 0.003 E 3.6 ± 0.005 F
30 s 54.2 ± 0.005 A 0.51 ± 0.003 D 31.5 ± 0.003 E 5.3 ± 0.007 E 6.7 ± 0.005 E
60 s 39.0 ± 0.031 B 0.60 ± 0.006 B 37.5 ± 0.025 B 8.1 ± 0.006 A 7.4 ± 0.003 B
90 s 22.6 ± 0.003 D 0.52 ± 0.003 D 33.7 ± 0.009 D 7.5 ± 0.003 C 7.0 ± 0.009 D
120 s 28.7 ± 0.003 C 0.64 ± 0.003 A 42.2 ± 0.009 A 7.2 ± 0.006 D 7.5 ± 0.006 A
150 s 22.2 ± 0.005 E 0.59 ± 0.003 C 35.0 ± 0.020 C 7.8 ± 0.003 B 7.2 ± 0.003 C

[i] *Dimensions are shown in mm. Significant statistical differences (Tukey, p < 0.05) in each column are indicated with different letters.

Figure 2

Seedlings of Prosopis laevigata (A and C) and Jacaranda mimosifolia in the early stage of its growth; seedling from not irradiated seed (D); B and E, seedlings from irradiated seed (60 s of irradiation).

2448-7597-mb-25-02-e2521665-gf2.jpg

Scale: 1 cm. Hy, hypocotyl; R, root.

Figure 3

Presence of starch grains in the mesophyll of the leaves of Prosopis laevigata (A, not irradiated; B, irradiated), and Jacaranda mimosifolia (C, without irradiation; D, irradiated).

2448-7597-mb-25-02-e2521665-gf3.png

In the case of Jacaranda mimosifolia, there were significant statistical differences (p < 0.05) between the control and the different treatments. The obtained experimental data (Fig. 4), showed that 29% of seed germination occurs without any treatment. No significant statistical differences were observed between treatments 90 s and 120 s of irradiation; the same come about when treatments 60 s and 150 s are compared (Fig. 4). However, with treatments 90 s and 120 s, germination is induced in a high percentage (97% - 99%). Also, as shown in Table 2, the application of He-Ne laser produced a beneficial effect on growth of seedlings. For example, the 120 s treatment had a positive effect on morphological characters, which showed, with respect to the control, an increase of root length (45.9 mm), hypocotyl diameter (0.64 mm), hypocotyl length (40.1 mm), and cotyledon size. Another effective treatment was the 60 s; in this treatment, the seedlings developed a root with 41.8 mm in length, as well as a hypocotyl of greater length and diameter (Table 2). In addition, with the implementation of this treatment the seedlings of J. mimosifolia showed a greater development and a highest number of leaves (Fig. 2D). In relation to the anatomical characteristics it was also observed that the leaf carried out the normal photosynthesis role as is the case with control seedlings, which is demonstrated by the presence of starch granules present in the mesophyll (Figs. 3C and 3D).

Figure 4

Germination percentage for Jacaranda mimosifolia seeds biostimulated with different He-Ne laser treatments.

2448-7597-mb-25-02-e2521665-gf4.jpg

The bars represent the mean ± standard deviation. Different letters on the bars indicate significant statistical differences (Tukey, p < 0.005).

Table 2

Morphological characters of Jacaranda mimosifolia seedlings registered with the application of different laser He-Ne treatments and the control (without irradiation).

Treatments Root Length Hypocotyl Diameter Hypocotyl Length Cotyledon Length Cotyledon Width
Control 34.2 ± 0.006 F 0.50 ± 0.006 E 28.4 ± 0.006 F 5.40 ± 0.003 C 5.0 ± 0.003 C
30 s 36.5 ± 0.007 D 0.60 ± 0.003 C 30.4 ± 0.006 E 5.25 ± 0.003 E 4.8 ± 0.006 E
60 s 41.8 ± 0.006 B 0.61 ± 0.006 B 38.6 ± 0.003 B 5.45 ± 0.003 B 5.0 ± 0.003 B
90 s 36.0 ± 0.003 E 0.55 ± 0.003 D 34.8 ± 0.003 D 5.35 ± 0.003 D 4.9 ± 0.003 D
120 s 45.9 ± 0.006 A 0.64 ± 0.003 A 40.1 ± 0.003 A 5.62 ± 0.003 A 5.2 ± 0.003 A
150 s 40.1 ± 0.003 C 0.59 ± 0.003 C 36.0 ± 0.003 C 5.20 ± 0.003 F 4.8 ± 0.003 E

[i] *Dimensions are shown in mm. Significant statistical differences (Tukey, p<0.05) in each column are indicated with different letters.

To understand the relationship between laser treatments versus morphological characteristics, a factor analysis has been used. Factor analysis is one of the statistical techniques that are effective to visualize an experimental behavior reducing the size of data. Factors analysis was performed based on morphological characters of Tables 1 and 2. The two first factors were selected for the classification of the data (Fig. 5). For these two factors the cumulative variances were 93% and 95% for Prosopis laevigata and Jacaranda mimosifolia, respectively. Based on the results of factor analysis depicted in figure 5, we observe that all laser treatments improved the morphological characteristics for both species in a similar way with respect to the control; however, the treatment of 120 s was the one that gave the best results taking into account the set of all the morphological characters.

Figure 5

Factorial analysis of morphological characters for Prosopis laevigata (blue dots) and Jacaranda mimosifolia (red dots) corresponding to data shown in Tables 1 and 2.

2448-7597-mb-25-02-e2521665-gf5.jpg

Discussion

It is generally accepted that the germination process is sensitive to irradiation with various wavelengths of visible and infrared light, for the latter case, for example, it has to be mentioned that the red light could act on phytochrome system (photoreceptor) which promotes germination (Shichijo, Kazuya, Osamu, & Tohru, 2001). Both, the breaking of dormancy and germination stimulation with laser treatments have focused on several cereal grains and vegetables seeds, experimental evidence suggests that there are significant positive effects that improve the quality of plant products obtained from these irradiated seeds.

In the species studied, the beneficial effect of He-Ne laser irradiation can be expressed as an increase in the germination percentage of seeds, and seedlings of greater height when compared with the control. In other investigations it has been observed that the stimulation effect depends on laser wavelength (λ, in nanomilimeters), irradiation time interval (t, in seconds), irradiation dose (D, J/cm2), in addition to the seed characteristics and the requirement to soak them in water (imbibition). According to Aladjadjiyan (2007) and Hernández-Aguilar et al. (2008) , the stimulatory effect is due to a further increase in the seed energy which is called bioplasm; therefore, raising the energy potential of this bioplasm raises the effect of stimulation for the seed to germinate (Truchliński et al., 2002; Jamil et al., 2013). In this way, it is possible to use red light (Helium-Neon) laser irradiation as pregerminative treatments of seeds to improve the germination capacity and strengthen the vigor of young plants or seedlings in the early stages of development since plants react positively toward the light irradiation at wavelengths of 630 nm - 650 nm (Truchliński et al., 2002; Hernández-Aguilar et al., 2010). In other plant species (Ricinus communis), Helium Neon (He-Ne) laser light improved growth and decreased osmotic potential followed by increasing relative water content and help plants to complete its life cycle in comparison with untreated plants (Sami, Sharbat, Bedour, & Aly, 2014).

In a study of the effect of different doses of laser irradiation obtained from different powers (1 mW, 5 mW, 10 mW, and 15 mW) and exposure times (1 min, 5 min, 10 min and 15 min), in the germination of seeds from grass called "kudzu" (Pueraria phaseoloides), González, Fortes and Herrera (2008) have noted that the power and irradiation time exert different effects on the seeds germination; for example, there was an increase in the germination (40% up to 63%) when 1 mW laser power was used. For seeds of radish (Raphanus sativus) and spring barley (Hordeum vulgare L.), He-Ne laser irradiation (λ = 632.8 nm, and 5 mWcm-2) can increase the final percentage of germination (FGP) from 7% to 9% higher than the control, also influence on the growth and early development of seedlings (Rybiński & Garczyński, 2004; Muszyński & Gladyszewska, 2008), as well as improve yield and crop production of economic interest or agronomically important species (Wilczek, Koper, Ćwintal, & Kornillowicz-Kowalska, 2005; Dziwulska et al., 2006; Kareem, El Tobgy, Osman, & El Sherbini, 2009; Perveen et al., 2011; Podleśny et al., 2012; Sacala et al., 2012; Jamil et al., 2013).

The biostimulation with He-Ne laser in addition to improving the germinative response of seeds and the growth of seedlings, has a beneficial influence on various biochemical processes in the plant (Abu-Elsaoud Abdelghafar, & Tuleukhanov, 2013; Taie, Lobna, Metwally, & Fathy, 2014, Abbas et al., 2017). According to Chen et al. (2005) for example, He-Ne laser pretreatment can improve the inner energy of seeds, lead to an enhancement of cotyledon enzymes and speed up the metabolism of the cell, significantly increased the cycles of cell division (mitosis) which results in an increase in the length of the plant organs during the early growth. Chen et al. (2005) studied the influence of laser irradiation on the thermodynamic and physiochemical parameters of seeds, and seedlings growth of medicinal plant Isatis indogotica, using an He-Ne laser (632.8 nm wavelength, 5.23 mWmm-2 intensity), laser treatment had great influence with significant increase on pyruvic acid concentration, soluble proteins and saccharides in seedlings. In our investigation the presence of transitory starch was observed in the leaves of Prosopis laevigata and Jacaranda mimosifolia seedlings from irradiated seeds. It is known that transitory starch is synthesized in chloroplasts of photosynthetic tissues as one of the primary products of atmospheric CO2 photosynthetic fixation. This type of starch accumulates in the form of granules insoluble by chloroplast during the day, granules that are degraded during the night ensuring a constant availability of sugars to all the plant. The correct regulation of the synthesis and degradation of starch is necessary for normal growth in a light-dark photoperiod. Also the synthesis and degradation of transitory starch affects various functions in the plant: flowering time, to the opening and closing of stomata and the maintenance of the photosynthetic rate (Pessarakli, 2014).

On the other hand, laser irradiation also has a beneficial effect by inducing biochemical changes of protection to plants when they are subjected to a certain type of stress or diseases (Starzycki, Rybiński, Starzycka, & Pszczola, 2005; Jia & Duan, 2013). For seedlings of Prosopis species which grow in arid and semiarid environments with high levels of solar radiation (Pérez-Sánchez et al., 2011), saline conditions, osmotic stress or contamination by heavy metals, treatment with He-Ne laser may result in a significant protective effect of damage to tissues as has been established to other plant species (Chen, 2010; Yang, Han, & Sun, 2012; Gao, Li, & Han., 2015; Qiu et al., 2007, 2008, 2013). So, in future, another important research could be to assess whether it is possible to have this protective effect generated by this method of laser irradiation, including the seeds and seedlings in species of this genus in particular, whose habitat is extreme and strongly limits the recruitment of adults in the field. In addition, the mezquite is affected by an overexploitation process (Espinosa, 2006), therefore, implementing efficient methods for its propagation by seed, could contribute to the reestablishment of its populations and avoid, in turn, the deterioration of the ecosystems (García-Sánchez et al., 2012). In the case of Jacaranda mimosifolia, there is no information about the factors that affect their populations; however, since this species is characterized by having medicinal properties (Mostafa et al., 2014), the application of laser irradiation as a pre-germinative treatment could be of great relevance for its propagation and use.

Conclusions

He-Ne laser treatments on seeds of Prosopis laevigata and Jacaranda mimosifolia had a positive effect on seed germination and morphological characters of seedlings. The greatest proportion of transitory starch demonstrated histochemically was observed in seedlings from irradiated seeds. The increased starch content may be related to its degradation for glucose production as energy source for the various metabolic reactions that take place during early growth of these species. The factorial analysis data processing showed that, independently of the laser treatment, germination percentages and morphological characters were improved, where the 120 s treatment, in general, showed the best results for both species. Although anatomical and biochemical changes in the seeds were not analyzed, it is highly probable that He-Ne laser irradiation had a significant influence on enzyme activities and acceleration in enzyme-mediated reactions, enhancing the biological activity and thereby causing enhanced entropy and internal energy of the seeds during germination, and as consequence an enhancement in growth of Jacaranda mimosifolia and Prosopis laevigata seedlings; nevertheless, further studies are required to make definite conclusions about this topic. The results show that this laser treatment may contribute significantly to the conservation and propagation of these species by the germination capacity and seedling growth improvement.

References

1 

Aladjadjiyan, A. (2007). The use of physical methods for plant growing stimulation in Bulgaria. Journal Central European Agriculture, 8(7), 369-380.

A. Aladjadjiyan 2007The use of physical methods for plant growing stimulation in BulgariaJournal Central European Agriculture87369380

2 

Abbas, M., Arshad, M., Nisar, N., Nisar, J., Ghaffar, A., Nazir, A., Tahir, A., & Iqbal, M. (2017). Muscilage characterization, biochemical and enzymatic activities of laser irradiated Lagenaria siceraria seedlings. Journal of Photochemistry and Photobiology, B: Biology, 173, 344-352. doi: 10.1016/j.jphotobiol.2017.06.012

M. Abbas M. Arshad N. Nisar J. Nisar A. Ghaffar A. Nazir A. Tahir M. Iqbal 2017Muscilage characterization, biochemical and enzymatic activities of laser irradiated Lagenaria siceraria seedlingsJournal of Photochemistry and Photobiology, B: Biology17334435210.1016/j.jphotobiol.2017.06.012

3 

Abu-Elsaoud A. M. & Tuleukhanov, S. T. (2013). Can He-Ne laser induce changes in oxidative stress and antioxidant activities of wheat cultivars from Kazakhstan and Egypt? Journal of Ecology of Health & Environment, 1(1), 39-50. doi: 10.17311/sciintl.2013.39.50

A. M. Abu-Elsaoud S. T. Tuleukhanov (2013Can He-Ne laser induce changes in oxidative stress and antioxidant activities of wheat cultivars from Kazakhstan and Egypt?Journal of Ecology of Health & Environment11395010.17311/sciintl.2013.39.50

4 

Azero, E. & Andrade, C. (2006). Characterization of Prosopis juliflora seed gum and the effect of its addition to k-carrageenan systems. Journal of the Brazilian Chemistry Society, 17(5), 844-850. doi: 10.1590/S0103-50532006000500005

E. Azero C. Andrade 2006Characterization of Prosopis juliflora seed gum and the effect of its addition to k-carrageenan systemsJournal of the Brazilian Chemistry Society175844850doi: 10.1590/S0103-50532006000500005

5 

Benavides, A., Garnica, M. J., Hernández, A. C., Fuentes, L. O., & Ramírez, H. (2007). Irradiación láser de semillas de lechuga para modificar la calidad nutricional de las hojas. Tecnología Química, Edición especial, 102-104.

A. Benavides M. J. Garnica A. C. Hernández L. O. Fuentes H. Ramírez 2007Irradiación láser de semillas de lechuga para modificar la calidad nutricional de las hojasTecnología Químicaespecial102104

6 

Beyene, G. & Hiwot, T. G. (2015). Feed resources of honeybees in Kewet District of Amhara, Ethiopia. Journal of Resources Development and Management, 7, 1-6.

G. Beyene T. G. Hiwot 2015Feed resources of honeybees in Kewet District of Amhara, EthiopiaJournal of Resources Development and Management716

7 

Brandt, R., Lachmuth, S., Landsschulz, C., Hab, F., & Jensen, I. (2014). Species-specific responses to environmental stress on germination and juvenile growth of two Bolivian Andean agroforestry species. New Forest, 45(6), 777-795. doi: 10.1007/s11056-014-9436-6

R. Brandt S. Lachmuth C. Landsschulz F. Hab I. Jensen 2014Species-specific responses to environmental stress on germination and juvenile growth of two Bolivian Andean agroforestry speciesNew Forest45677779510.1007/s11056-014-9436-6

8 

Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C. E., & Vernon-Carter, E. J. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology, 101(15), 5862-5867. doi: 10.1016/j.biortech.2010.03.027

L. Buendía-González J. Orozco-Villafuerte F. Cruz-Sosa C. E. Barrera-Díaz E. J. Vernon-Carter 2010Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plantBioresource Technology101155862586710.1016/j.biortech.2010.03.027

9 

Chen Y.P., Yue, M., & Xun-Ling, W. (2005). Influence of He-Ne laser irradiation on seeds thermodynamic parameters and seedlings growth of Isatis indogotica. Plant Science, 168(3), 601-606. doi: 10.1016/j.plantsci.2004.09.005

Y.P. Chen M. Yue W. Xun-Ling 2005Influence of He-Ne laser irradiation on seeds thermodynamic parameters and seedlings growth of Isatis indogoticaPlant Science1683601606doi: 10.1016/j.plantsci.2004.09.005

10 

Chen Y. P., Jia, J. F., & Yue, M. (2010). Effect of CO2 laser radiation on physiological tolerance of wheat seedlings exposed to chilling stress. Photochemistry & Photobiology, 86, 600-605. doi: 10.1111/j.1751-1097.2010.00723.x

Y. P. Chen J. F. Jia M. Yue 2010Effect of CO2 laser radiation on physiological tolerance of wheat seedlings exposed to chilling stressPhotochemistry & Photobiology8660060510.1111/j.1751-1097.2010.00723.x

11 

D’Aubeterre, R., Principal, J., & García, J. (2002). Efecto de diferentes métodos de escarificación sobre la germinación de tres especies del género Prosopis. Revista Científica, 12, 575-577.

R. D’Aubeterre J. Principal J. García 2002Efecto de diferentes métodos de escarificación sobre la germinación de tres especies del género ProsopisRevista Científica12575577

12 

Dinoev St., Antonov, M., Stoyanov, T., & Georgieva, C. (2004). Spectral impact of low-power laser radiation on wheat and maize parameters. Problems of Engineering Cybernetics and Robotics, 54, 74-85.

Dinoev St. M. Antonov T. Stoyanov C. Georgieva 2004Spectral impact of low-power laser radiation on wheat and maize parametersProblems of Engineering Cybernetics and Robotics547485

13 

Dziwulska, A., Wilczek, M., & Ćwintal, M. (2006). Effect of laser stimulation on crop yield of alfalfa and hybrid alfalfa studied in years of full land use. Acta Agrophysica, 7(2), 327-336.

A. Dziwulska M. Wilczek M. Ćwintal 2006Effect of laser stimulation on crop yield of alfalfa and hybrid alfalfa studied in years of full land useActa Agrophysica72327336

14 

Espinosa, H. A. & Lina, M. P. (2006). La sobre explotación del Mezquite y el deterioro de los ecosistemas. Retrieved from http://www.sicbasa.com

H. A. Espinosa M. P. Lina 2006La sobre explotación del Mezquite y el deterioro de los ecosistemashttp://www.sicbasa.com

15 

Food and Agriculture Organization of the United Nations [FAO] (2003a). Situación actual de los recursos genéticos forestales. Retrieved from http://www.fao.org

Food and Agriculture Organization of the United Nations [FAO] 2003Situación actual de los recursos genéticos forestaleshttp://www.fao.org

16 

Food and Agriculture Organization of the United Nations [FAO] (2003b). El género Prosopis “algarrobos” en América Latina y el Caribe. Distribución, bioecología, usos y manejo. Retrieved fom http://www.fao.org

Food and Agriculture Organization of the United Nations [FAO] 2003El género Prosopis “algarrobos” en América Latina y el Caribe. Distribución, bioecología, usos y manejohttp://www.fao.org

17 

Foroughbakhch, R., Carrillo-Parra, A., Hernández-Piñero, J. L. , M. A., Alvarado-Vázquez, M. A., Rocha-Estrada, A., & Cárdenas, M. L. (2012). Wood volume production and use of 10 woody species in semiarid zones of Northeastern Mexico. International Journal of Forestry Research, 2012, 529829. doi: 10.1155/2012/529829

R. Foroughbakhch A. Carrillo-Parra J. L. , M. A. Hernández-Piñero M. A. Alvarado-Vázquez A. Rocha-Estrada M. L. Cárdenas 2012Wood volume production and use of 10 woody species in semiarid zones of Northeastern MexicoInternational Journal of Forestry Research2012529829doi: 10.1155/2012/529829

18 

Gao, L. M., Li, Y. F., & Han, R. (2015). He-Ne laser preillumination improves the resistance of tall fescue (Festuca arundinaceae Schreb.) seedlings to high saline conditions. Protoplasma, 252, 1135-1148. doi: 10.1007/s00709-014-0748-3

L. M. Gao Y. F. Li R. Han 2015He-Ne laser preillumination improves the resistance of tall fescue (Festuca arundinaceae Schreb.) seedlings to high saline conditionsProtoplasma2521135114810.1007/s00709-014-0748-3

19 

García-Aguilera, E., Martínez-Jaime, O. A., Torres, S., & Frías-Hernández, J. T. (2000). Escarificación biológica del mezquite (Prosopis laevigata) con diferentes especies de ganado doméstico. In J. T. Frías-Hernández, V. Olalde-Portugal, & E- J. Vernon Carter (Eds.). El Mezquite Árbol de Usos Múltiples. Estado actual del conocimiento en México (117-123). Guanajuato, México: Universidad de Guanajuato, México.

E. García-Aguilera O. A. Martínez-Jaime S. Torres J. T. Frías-Hernández (2000Escarificación biológica del mezquite (Prosopis laevigata) con diferentes especies de ganado doméstico J. T. Frías-Hernández V. Olalde-Portugal E- J. Vernon Carter El Mezquite Árbol de Usos Múltiples. Estado actual del conocimiento en México117123Guanajuato, MéxicoUniversidad de Guanajuato

20 

García-Andrade, M., González-Laredo, R. F., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Rosales-Castro, M., & Medina-Torres, L. (2013). Mezquite leaves (Prosopis laevigata), a natural resource with antioxidant capacity and cardio protection potential. Industrial Crops and Products, 44, 336-342. doi: 10.1016/j.indcrop.2012.11.030

M. García-Andrade R. F. González-Laredo N. E. Rocha-Guzmán J. A. Gallegos-Infante M. Rosales-Castro L. Medina-Torres 2013Mezquite leaves (Prosopis laevigata), a natural resource with antioxidant capacity and cardio protection potentialIndustrial Crops and Products44336342doi: 10.1016/j.indcrop.2012.11.030

21 

García-Sánchez, R., Camargo-Ricalde, S. L., García-Moya, E., Luna-Cavazos, M., Romero-Manzanares, A., & Montaño, N. M. (2012). Prosopis laevigata and Mimosa biuncifera (Leguminosae), jointly influence plant diversity and soil fertility of a Mexican semiarid ecosystem. Revista Biología Tropical, 60(1), 87-103.

R. García-Sánchez S. L. Camargo-Ricalde E. García-Moya M. Luna-Cavazos A. Romero-Manzanares N. M. Montaño 2012Prosopis laevigata and Mimosa biuncifera (Leguminosae), jointly influence plant diversity and soil fertility of a Mexican semiarid ecosystemRevista Biología Tropical60187103

22 

Gladyszewska, B. (2011). Estimation of a laser biostimulation dose. International Agrophyics, 25, 403-405.

B. Gladyszewska 2011Estimation of a laser biostimulation doseInternational Agrophyics25403405

23 

Gilman, E. F. & Watson, D. G. (1993). Jacaranda mimosifolia Jacaranda. Fact Sheet ST-317, Environmental Horticulture Department, University of Florida.

E. F. Gilman D. G. Watson 1993Jacaranda mimosifoliaJacarandaST-317Environmental Horticulture Department, University of Florida

24 

González, S., Fortes, D., & Herrera, R.S. (2008). Efecto de diferentes dosis de radiación láser en la germinación de semillas de kudzú (Pueraria phaseoloides). Revista Cubana de Ciencia Agrícola, 42, 93-95.

S. González D. Fortes R.S. Herrera 2008Efecto de diferentes dosis de radiación láser en la germinación de semillas de kudzú (Pueraria phaseoloides)Revista Cubana de Ciencia Agrícola429395

25 

Hernández-Aguilar, C., Mezzalama, M., Lozano, N., Cruz- Orea, A., Martínez, E., Ivanov, R., & Domínguez-Pacheco, A. (2008). Optical absorption coefficient of laser irradiated wheat seeds determined by photoacoustic spectroscopy. The European Physical Journal Special Topics, 153, 519-522. doi: 10.1140/epjst/e2008-00498-0

C. Hernández-Aguilar M. Mezzalama N. Lozano A. Cruz- Orea E. Martínez R. Ivanov A. Domínguez-Pacheco 2008Optical absorption coefficient of laser irradiated wheat seeds determined by photoacoustic spectroscopyThe European Physical Journal Special Topics15351952210.1140/epjst/e2008-00498-0

26 

Hernández-Aguilar, C. , Domínguez, P. A., Cruz, O. A., Ivanov, R. , Carballo, C. A., & Zepeda, B. R. (2010). Laser in Agriculture International Agrophysics, 24, 407-422.

C. Hernández-Aguilar P. A. Domínguez O. A. Cruz R. Ivanov C. A. Carballo B. R. Zepeda 2010Laser in AgricultureInternational Agrophysics24407422

27 

Hong, T. S., Linington, S., & Ellis, R. (1996). Seed storage behavior: a compendium. Handbook for genebanks. No 4. Roma, Italy: IPGRI.

T. S. Hong S. Linington R. Ellis 1996Seed storage behavior: a compendiumHandbook for genebanks4Roma, ItalyIPGRI

28 

International Seed Testing Association [ISTA] (2018). International Rules for Seed Testing, Chapter 1. ISTA Certificates, 1-20. doi: 10.15258/istarules.2018.01

International Seed Testing Association [ISTA] 2018International Rules for Seed TestingChapter 1ISTA Certificates12010.15258/istarules.2018.01

29 

Jamil, Y., Perveen, R., Ashraf, M., Ali, Q., Iqbal, M., & Ahmad, M. R. (2013). He-Ne laser induced changes in germination, thermodynamic parameters, internal energy, enzime activities and physiological attributes of wheat during germination and early growth. Laser Physics Letter, 10, 1-8. doi:10.1088/1612-2011/10/4/045606

Y. Jamil R. Perveen M. Ashraf Q. Ali M. Iqbal M. R. Ahmad 2013He-Ne laser induced changes in germination, thermodynamic parameters, internal energy, enzime activities and physiological attributes of wheat during germination and early growthLaser Physics Letter101810.1088/1612-2011/10/4/045606

30 

Jia, Z. & Duan, J. (2013). Protecting effect of He-Ne laser on Winter wheat from UV-B radiation damage by analyzing proteomic changes in leaves. Advances in Bioscience and Biotechnology, 4, 823-829. doi: 10.4236/abb.2013.48109

Z. Jia J. Duan 2013Protecting effect of He-Ne laser on Winter wheat from UV-B radiation damage by analyzing proteomic changes in leavesAdvances in Bioscience and Biotechnology482382910.4236/abb.2013.48109

31 

Kareem, M. K., El Tobgy, M. K., Osman, Y. A. H., & El Sherbini, E. S. A. (2009). Effect of laser radiation on growth, yield and chemical constituents of anise and cumin plants. Journal of Applied Sciences Research, 5(5), 522-528.

M. K. Kareem M. K. El Tobgy Y. A. H. Osman E. S. A. El Sherbini 2009Effect of laser radiation on growth, yield and chemical constituents of anise and cumin plantsJournal of Applied Sciences Research55522528

32 

Lariguet, P. & Dunand, C. (2005). Plant photoreceptors: phylogenetic overview. Journal of Molecular Evolution, 61, 559-569. doi: 10.1007/s00239-004-0294-2

P. Lariguet C. Dunand 2005Plant photoreceptors: phylogenetic overviewJournal of Molecular Evolution6155956910.1007/s00239-004-0294-2

33 

Li, F., Zhou, L., Shi, J., & Gao, S. (2012). Promotion of IAA, NAA on seed germination of Jacaranda mimosifolia. Journal of Agricultural Science & Technology, 2 (11), 1184-1189.

F. Li L. Zhou J. Shi S. Gao 2012Promotion of IAA, NAA on seed germination of Jacaranda mimosifoliaJournal of Agricultural Science & Technology21111841189

34 

López-Franco, Y. L., Goycoolea, F. M., Valdez, M. A., & Calderón, B. A. M. (2006). Goma de mezquite: una alternativa de uso industrial. Interciencia, 31, 183-189.

Y. L. López-Franco F. M. Goycoolea M. A. Valdez B. A. M. Calderón 2006Goma de mezquite: una alternativa de uso industrialInterciencia31183189

35 

López-Curto, M. L., Márquez-Guzmán, J., & Murguía-Sánchez, G. (2005). Técnicas para el estudio del desarrollo en angiospermas. México: UNAM.

M. L. López-Curto J. Márquez-Guzmán G. Murguía-Sánchez 2005Técnicas para el estudio del desarrollo en angiospermasMéxicoUNAM

36 

Maldonado-Aguirre L. & De la Garza, P. (2000). El mezquite en México: Rasgos de importancia productiva y necesidades de desarrollo. In J. T Frías-Hernández, V. Olalde-Portugal , & E. J. Vernon-Carter (Eds.), El Mezquite Árbol de Usos Múltiples. Estado actual del conocimiento en México (pp. 37-50). México: Universidad de Guanajuato.

L. Maldonado-Aguirre P. De la Garza 2000El mezquite en México: Rasgos de importancia productiva y necesidades de desarrollo J. T Frías-Hernández V. Olalde-Portugal E. J. Vernon-Carter El Mezquite Árbol de Usos Múltiples. Estado actual del conocimiento en México3750MéxicoUniversidad de Guanajuato

37 

Medina-Cuéllar, S. E., Tirado-González, D. N., Portillo-Vázquez, M., López-Santiago, M. A., & Franco-Olivares, V. H. (2018). Environmental implications for the production of honey from mezquite (Prosopis laevigata) in semiarid ecosystems. Journal of Apicultural Research, 57(4), 507-515. doi: 10.1080/00218839.2018.1454377

S. E. Medina-Cuéllar D. N. Tirado-González M. Portillo-Vázquez M. A. López-Santiago V. H. Franco-Olivares 2018Environmental implications for the production of honey from mezquite (Prosopis laevigata) in semiarid ecosystemsJournal of Apicultural Research57450751510.1080/00218839.2018.1454377

38 

Méndez, G. J., Turlan, M. O. A., Ríos, S. J. C., & Nájera, L. J. A. (2012). Ecuaciones alométricas para estimar biomasa aérea de Prosopis laevigata (Humb. And Bonpl. Ex Willd.) M. C. Johnst. Revista Mexicana de Ciencias Forestales, 3(13), 57-72.

G. J. Méndez M. O. A. Turlan S. J. C. Ríos L. J. A. Nájera 2012Ecuaciones alométricas para estimar biomasa aérea de Prosopis laevigata (Humb. And Bonpl. Ex Willd.) M. C. JohnstRevista Mexicana de Ciencias Forestales3135772

39 

Miyajima, I., Kato, A., Hagiwara, J. C., Mata, D., Facciuto, G., Soto, S., Escandón, A., Mori, M., & Kobayashi, N. (2005). Promotion of immature seed germination in Jacaranda mimosifolia. HortScience, 40(5), 1485-1486.

I. Miyajima A. Kato J. C. Hagiwara D. Mata G. Facciuto S. Soto A. Escandón M. Mori N. Kobayashi 2005Promotion of immature seed germination in Jacaranda mimosifoliaHortScience40514851486

40 

Mostafa, N. M., Eldahsan, O. A., & Singab, A. N. B. (2014). The genus Jacaranda (Bignoniaceae): An updated review. Pharmacognosy Communications, 4(3), 31-39.

N. M. Mostafa O. A. Eldahsan A. N. B. Singab 2014The genus Jacaranda (Bignoniaceae): An updated reviewPharmacognosy Communications433139

41 

Muszyński, S. & Gladyszewska, B. (2008). Representation of He-Ne laser irradiation effect on radish seeds with selected germination indices. International Agrophysics , 22,151-157.

S. Muszyński B. Gladyszewska 2008Representation of He-Ne laser irradiation effect on radish seeds with selected germination indicesInternational Agrophysics22151157

42 

Orozco-Villafuerte, J. , Cruz-Sosa, F. , Ponce-Alquicira, E., & Vernon-Carter, E. J. (2003). Mezquite gum: fractionation and characterization of the gum exuded from Prosopis laevigata obtained from plant tissue culture and from wild trees. Carbohydrate Polymers, 54, 327-333. doi: 10.1016/S0144-8617(03)00187-5

J. Orozco-Villafuerte F. Cruz-Sosa E. Ponce-Alquicira E. J. Vernon-Carter 2003Mezquite gum: fractionation and characterization of the gum exuded from Prosopis laevigata obtained from plant tissue culture and from wild treesCarbohydrate Polymers5432733310.1016/S0144-8617(03)00187-5

43 

Palacios, R. A. (2006). Los mezquites mexicanos: biodiversidad y distribución geográfica. Boletín de la Sociedad Argentina de Botánica, 41, 99-121.

R. A. Palacios 2006Los mezquites mexicanos: biodiversidad y distribución geográficaBoletín de la Sociedad Argentina de Botánica4199121

44 

Pérez-Sánchez, R. M., Jurado, E., Chapa-Vargas, L., & Flores, J. (2011). Seed germination of Southern Chihuahuan Desert plants in response to elevated temperatures. Journal of Arid Environmentsk, 75, 978-980. doi:10.1016/j.jaridenv.2011.04.020

R. M. Pérez-Sánchez E. Jurado L. Chapa-Vargas J. Flores 2011Seed germination of Southern Chihuahuan Desert plants in response to elevated temperaturesJournal of Arid Environmentsk7597898010.1016/j.jaridenv.2011.04.020

45 

Perveen, R., Jamil, Y., Ashraf, M., Ali, Q., Iqbal, M., & Ahmad, R. (2011). He-Ne laser-induced improvement in biochemical, physiological, growth and yield characteristics in sunflower (Helianthus annuus L.). Photochemistry and Photobiology 87, 1453-1463. doi: 10.1111/j.1751-1097.2011.00974.x

R. Perveen Y. Jamil M. Ashraf Q. Ali M. Iqbal R. Ahmad 2011.He-Ne laser-induced improvement in biochemical, physiological, growth and yield characteristics in sunflower (Helianthus annuus L.)Photochemistry and Photobiology871453146310.1111/j.1751-1097.2011.00974.x

46 

Pessarakli, M. (2014). Handbook of plant and crop physiology (3rd ed.). Boca Raton, FL: CRC Press, Taylor and Francis Group.

M. Pessarakli 2014Handbook of plant and crop physiology3rdBoca Raton, FLCRC Press, Taylor and Francis Group

47 

Podleśny, J., Stochmal, A., Podleśna, A., & Misiak, L. E. (2012). Effect of laser light treatment on some biochemical and physiological processes in seeds and seedlings of white lupine and faba bean. Plant Growth Regulation, 67, 227-233. doi 10.1007/s10725-012-9681-7

J. Podleśny A. Stochmal A. Podleśna L. E. Misiak 2012Effect of laser light treatment on some biochemical and physiological processes in seeds and seedlings of white lupine and faba beanPlant Growth Regulation6722723310.1007/s10725-012-9681-7

48 

Póvoa, O. (2018). Effect of the fruits type and conservation time in the germination capacity of Jacaranda (Jacaranda mimosifolia D. Don.) seeds collected in Lentejo, South Portugal. International Journal of Plant Biology & Research, 6(2), 1084-1088.

O. Póvoa 2018Effect of the fruits type and conservation time in the germination capacity of Jacaranda (Jacaranda mimosifolia D. Don.) seeds collected in Lentejo, South PortugalInternational Journal of Plant Biology & Research6210841088

49 

Prośba-Bialczyk, U., Szajsner, H., Grzys, E., Demczuk, A., Sacala, E., & Bąk, K. (2013). Effect of seed stimulation on germination and sugar beet yield. International Agrophysics , 27, 195-201. doi: 10.2478/v10247-012-0085-8

U. Prośba-Bialczyk H. Szajsner E. Grzys A. Demczuk E. Sacala K. Bąk 2013Effect of seed stimulation on germination and sugar beet yieldInternational Agrophysics2719520110.2478/v10247-012-0085-8

50 

Qiu, Z. B., Zhu, X. J., Li, F. M., Liu, X., & Yue, M. (2007). The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage. Photochemical and Photobiology Sciences, 6(7), 788-793. doi: 10.1039/b618131g

Z. B. Qiu X. J. Zhu F. M. Li X. Liu M. Yue 2007The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damagePhotochemical and Photobiology Sciences6778879310.1039/b618131g

51 

Qiu, Z. B. , Liu, X. , Tian, X. J., & Yue, M. (2008). Effects of CO2 laser pretreatment on drought stress resistence in wheat. Journal of Photochemistry and Photobiology B: Biology, 90, 17-25. doi:10.1016/j.jphotobiol.2007.09.014

Z. B. Qiu X. Liu X. J. Tian M. Yue 2008Effects of CO2 laser pretreatment on drought stress resistence in wheatJournal of Photochemistry and Photobiology B: Biology90172510.1016/j.jphotobiol.2007.09.014

52 

Qiu, Z. B. , Li, J. T., Zhang, M. M., Bi, Z. Z., & Li, Z. L. (2013). He-Ne laser pretreatment protects wheat seedlings against cadmium-induced oxidative stress. Ecotoxicology and Environmental Safety, 88, 135-141. doi: 10.1016/j.ecoenv.2012.11.001

Z. B. Qiu J. T. Li M. M. Zhang Z. Z. Bi Z. L. Li 2013He-Ne laser pretreatment protects wheat seedlings against cadmium-induced oxidative stressEcotoxicology and Environmental Safety8813514110.1016/j.ecoenv.2012.11.001

53 

Rivas-Medina, G., González, C. G., Valencia, C. C. M., Sánchez, C. I., & Villanueva, D. J. (2005). Morfología y escarificación de la semilla de mezquite, huizache y ahuehuete. Técnica Pecuaria en México, 43(3), 441-448.

G. Rivas-Medina C. G. González C. C. M. Valencia C. I. Sánchez D. J. Villanueva 2005Morfología y escarificación de la semilla de mezquite, huizache y ahuehueteTécnica Pecuaria en México433441448

54 

Rodríguez-Sauceda, E. N., Rojo-Martínez, G. E., Ramírez-Valverde, B., Martínez-Ruiz, R., Cong-Hermida, M. C., Medina-Torres, S. M., & Piña-Ruiz, H. H. (2014). Análisis técnico del árbol del mezquite (Prosopis laevigata Humb. & Bonpl. Ex Willd.) en México. Ra Ximhai, 10(3), 173-193.

E. N. Rodríguez-Sauceda G. E. Rojo-Martínez B. Ramírez-Valverde R. Martínez-Ruiz M. C. Cong-Hermida S. M. Medina-Torres H. H. Piña-Ruiz 2014Análisis técnico del árbol del mezquite (Prosopis laevigata Humb. & Bonpl. Ex Willd.) en MéxicoRa Ximhai103173193

55 

Rojas, J. J., Ochoa, J. V., Ocampo, A. S., & Muñoz, F. J. (2006). Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: an alternative in the treatment of non-nosocomial infections. BMC Complementary and Alternative Medicine, 6(2), 1-6. doi: 10.1186/1472-6882-6-2

J. J. Rojas J. V. Ochoa A. S. Ocampo F. J. Muñoz 2006Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: an alternative in the treatment of non-nosocomial infectionsBMC Complementary and Alternative Medicine621610.1186/1472-6882-6-2

56 

Rybiński, W. (2000). Influence of laser beams on the variability of traits in spring barley. International Agrophysics , 14, 227-232.

W. Rybiński 2000Influence of laser beams on the variability of traits in spring barleyInternational Agrophysics14227232

57 

Rybiński, W. & Garczyński, S. (2004). Influence of laser light on leaf area and parameters of photosynthetic activity in DH lines of spring barley (Hordeum vulgare L.) International Agrophysics , 18, 261-267.

W. Rybiński S. Garczyński 2004Influence of laser light on leaf area and parameters of photosynthetic activity in DH lines of spring barley (Hordeum vulgare L.)International Agrophysics18261267

58 

Sacala, E., Demczuk, A., Grzyś, E., Prosba-Bialczyk, U., & Szajsner, H. (2012). Impact of presowing laser irradiation of seeds on sugar beet properties. International Agrophysics , 26, 295-300. doi: 10.2478/v10247-012-0042-6

E. Sacala A. Demczuk E. Grzyś U. Prosba-Bialczyk H. Szajsner 2012Impact of presowing laser irradiation of seeds on sugar beet propertiesInternational Agrophysics2629530010.2478/v10247-012-0042-6

59 

Sami, A. M., Sharbat, L. M., Bedour, H. A., & Aly, M. S. (2014). Effect of drought stress and Helium Neon (He-Ne) laser rays on growth, oil yield and fatty acids content in Caster bean (Ricinus communis L.). Journal of Agriculture, Forestry and Fisheries, 3(3), 203-208. doi: 10.11648/j.aff.20140303.20

A. M. Sami L. M. Sharbat H. A. Bedour M. S. Aly 2014Effect of drought stress and Helium Neon (He-Ne) laser rays on growth, oil yield and fatty acids content in Caster bean (Ricinus communis L.)Journal of Agriculture, Forestry and Fisheries3320320810.11648/j.aff.20140303.20

60 

SAS. (2002). SAS User’s Guide: Statistics. SAS Inst. Inc., Cary, NC.

SAS 2002SAS User’s Guide: StatisticsSAS Inst. Inc.Cary, NC

61 

Saucedo-Anaya, S. A., Zapata-Vázquez, M. C., Pinedo-Vega, J. L., Dávila-Rangel, J. I., Ríos-Martínez, C., & Mireles-Garcia, F. (2017) Study of Gamma Radiation in Honey from the Zacatecas State, Proceedings of the IJM CDMX 2017 June 18-21.

S. A. Saucedo-Anaya M. C. Zapata-Vázquez J. L. Pinedo-Vega J. I. Dávila-Rangel C. Ríos-Martínez F. Mireles-Garcia 2017Study of Gamma Radiation in Honey from the Zacatecas StateProceedings of the IJMCDMX2017 June 18-21

62 

Secretaría de Agricultura y Desarrollo Rural [Sagarpa] (2015). Precios al mayoreo de la miel en México. Notiabeja, 3, 4.

Secretaría de Agricultura y Desarrollo Rural [Sagarpa] 2015Precios al mayoreo de la miel en MéxicoNotiabeja344

63 

Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria [Senasica] (2015). Manual de buenas prácticas pecuarias en la producción de miel. México, D.F.: Senasica.

Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria [Senasica] 2015Manual de buenas prácticas pecuarias en la producción de mielMéxico, D.F.Senasica

64 

Shichijo C, Kazuya, K., Osamu, T., & Tohru, H. (2001). Phytochrome A- mediated inhibition of seed germination in tomato. Planta, 213(5), 764-769. doi: 10.1007/s004250100545

C Shichijo K. Kazuya T. Osamu H. Tohru 2001Phytochrome A- mediated inhibition of seed germination in tomatoPlanta2135764769doi: 10.1007/s004250100545

65 

Socolowski, F. & Massanori, T. (2004 ). Germination of Jacaranda mimosifolia (D. Don Bignoniaceae) seeds: effects of light, temperature and water stress. Brazilian Archives of Biology and Technology, 47, 785-792 . doi: 10.1590/S1516-89132004000500014

F. Socolowski T. Massanori 2004Germination of Jacaranda mimosifolia (D. Don Bignoniaceae) seeds: effects of light, temperature and water stressBrazilian Archives of Biology and Technology4778579210.1590/S1516-89132004000500014

66 

Starzycki, M., Rybiński W., Starzycka E., & Pszczoła, J. (2005). Laser light as a physical factor enhancing rapeseed resistance to blackleg disease. Acta Agrophysica , 5(2), 441-446.

M. Starzycki Starzycka E. Rybiński W. J. Pszczoła 2005Laser light as a physical factor enhancing rapeseed resistance to blackleg diseaseActa Agrophysica52441446

67 

Sujak, A., Dziwulska-Hunek, A., & Kornazyński, K. (2009). Compositional and nutritional values of amaranth seeds after pre-sowing He-Ne laser light and alternating magnetic field treatment, International Agrophysics , 23(1), 81-86.

A. Sujak A. Dziwulska-Hunek K. Kornazyński 2009Compositional and nutritional values of amaranth seeds after pre-sowing He-Ne laser light and alternating magnetic field treatmentInternational Agrophysics2318186

68 

Taie, A. A., Lobna, S. T., Metwally, S. A., & Fathy, H. M. (2014). Effect of laser radiation treatments on in vitro growth behavior, antioxidant activity and chemical constituents of Sequoia sempervirens. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(4), 1024-1034.

A. A. Taie S. T. Lobna S. A. Metwally H. M. Fathy 2014Effect of laser radiation treatments on in vitro growth behavior, antioxidant activity and chemical constituents of Sequoia sempervirensResearch Journal of Pharmaceutical, Biological and Chemical Sciences5410241034

69 

Torres, P. G., Huang, L. F., Chua, N. H., & Bolle, C. (2006). The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses. Molecular Genetics and Genomics, 273(1), 13-30.

P. G. Torres L. F. Huang N. H. Chua C. Bolle 2006The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responsesMolecular Genetics and Genomics27311330

70 

Torres, L. G., Carpinteyro-Urban, S. L., & Vaca, M. (2012). Use of Prosopis laevigata seed gum and Opuntia ficus-indica mucilage for the treatment of municipal wastewaters by coagulation-flocculation. Natural Resources, 3, 35-41. doi: 10.4236/nr.2012.32006

L. G. Torres S. L. Carpinteyro-Urban M. Vaca 2012Use of Prosopis laevigata seed gum and Opuntia ficus-indica mucilage for the treatment of municipal wastewaters by coagulation-flocculationNatural Resources3354110.4236/nr.2012.32006

71 

Truchliński, J., Wesolowsky, M., Koper, R., & Dziamba, S. Z. (2002). Influence of pre-sowing red light radiation on the content of antinutritional factors, mineral elements and basic nutritional components in triticale seeds. International Agrophysics , 16, 227-230.

J. Truchliński M. Wesolowsky R. Koper S. Z. Dziamba 2002.Influence of pre-sowing red light radiation on the content of antinutritional factors, mineral elements and basic nutritional components in triticale seedsInternational Agrophysics16227230

72 

Valenzuela, N. L. M., Ríos, S. J. C, Barrientos, A. K. R., Muro, P. G., Sánchez, S. J., & Briseño, C. E. A. (2015). Estructura y composición florística en dos comunidades de mezquite (Prosopis laevigata (Humb. & Bonpl. Ex Willd.) M.C. Johnst.) en Durango, México. Interciencia, 40(7), 465-472.

N. L. M. Valenzuela S. J. C Ríos A. K. R. Barrientos P. G. Muro S. J. Sánchez C. E. A. Briseño 2015Estructura y composición florística en dos comunidades de mezquite (Prosopis laevigata (Humb. & Bonpl. Ex Willd.) M.C. Johnst.) en Durango, MéxicoInterciencia407465472

73 

Weise, S. E., van Wijk, K. J., & Sharkey, T. D. (2011). The role of transitory starch in C3, CAM, and C4 metabolism and opportunities for engineering leaf starch accumulation. Journal of Experimental Botany, 62(9), 3109-3118. doi:10.1093/jxb/err035

S. E. Weise K. J. van Wijk T. D. Sharkey 2011The role of transitory starch in C3, CAM, and C4 metabolism and opportunities for engineering leaf starch accumulationJournal of Experimental Botany6293109311810.1093/jxb/err035

74 

Wessa, P. (2018), Free Statistics Software (version 1.2.1). Office for Research Development and Education. Retrieved from https://www.wessa.net/

P. Wessa 2018Free Statistics Software1.2.1Office for Research Development and Educationhttps://www.wessa.net/

75 

Wilczek, M., Koper, R., Ćwintal, M., & Kornillowicz-Kowalska, T. (2005). Germination capacity and health status of hybrid alfalfa seeds after laser treatment. International Agrophysics , 19, 257-261.

M. Wilczek R. Koper M. Ćwintal T. Kornillowicz-Kowalska 2005Germination capacity and health status of hybrid alfalfa seeds after laser treatmentInternational Agrophysics19257261

76 

Wright, S. J., Trakhtenbrot, A., Bohrer, G., Detto, M., Katul, G.G., Horvitz, N., Muller-Landau, H. C., Jones, F. A., & Nathan, R. (2008). Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19084-19089. doi: 10.1073/pnas.0802697105

S. J. Wright A. Trakhtenbrot G. Bohrer M. Detto G.G. Katul N. Horvitz H. C. Muller-Landau F. A. Jones R. Nathan 2008Understanding strategies for seed dispersal by wind under contrasting atmospheric conditionsProceedings of the National Academy of Sciences of the United States of America10549190841908910.1073/pnas.0802697105

77 

Yang, L., Han, R., & Sun, Y. (2012). Damage repair effect of He-Ne laser on wheat exposed to enhanced ultraviolet-B radiation. Plant Physiology and Biochemistry, 57, 218-221. doi: 10.1016/j.plaphy.2012.06.003

L. Yang R. Han Y. Sun 2012Damage repair effect of He-Ne laser on wheat exposed to enhanced ultraviolet-B radiationPlant Physiology and Biochemistry5721822110.1016/j.plaphy.2012.06.003



This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019 Madera y Bosques

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.


Madera y Bosques, Vol. 24, Núm. 1, Primavera 2018, es una publicación cuatrimestral editada por el Instituto de Ecología, A.C. Carretera antigua a Coatepec, 351, Col. El Haya, Xalapa, Ver. C.P. 91070, Tel. (228) 842-1835, http://myb.ojs.inecol.mx/, mabosque@inecol.mx. Editor responsable: Raymundo Dávalos Sotelo. Reserva de Derechos al Uso Exclusivo 04-2016-062312190600-203, ISSN electrónico 2448-7597, ambos otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este Número, Reyna Paula Zárate Morales, Carretera antigua a Coatepec, 351, Col. El Haya, Xalapa, Ver., C.P. 91070, fecha de última modificación, 25 de abril de 2018.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación.

Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

 

Licencia Creative Commons

  Los aspectos éticos relacionados con la publicación de manuscritos en Madera y Bosques se apegan a los establecidos en el COPE.

  Gestionando el conocimiento