Mendoza-Hernández, Gerez-Fernández, Purata-Velarde, and Toledo-Aceves: Growth rates of valuable tree species in secondary tropical montane cloud forests in Mexico: influence of tree size, crown position and competition



Introduction

Characterized by exceptional concentrations of biodiversity and endemicity (Scatena, Bruijnzeel, Bubb, & Das, 2011), tropical montane cloud forests (TMCF) are subjected to significant deforestation and degradation due to land use change, fragmentation and unauthorized selective logging (Scatena et al., 2011; Toledo-Aceves, Meave, González-Espinoza, & Ramírez-Marcial, 2011). In Mexico, only 28% of the original TMCF cover remained by 2002 and, of this, 52.4% corresponded to degraded or secondary forests (Challenger et al., 2009). Important triggers of TMCF loss and degradation include government programs promoting agriculture and cattle grazing in areas of TMCF distribution, a lack of support for sustainable forestry operations and for commodity market production (Bray & Merino, 2005; Martínez et al., 2009; Toledo-Aceves et al., 2011). Frequently located on very steep slopes and with low productivity, both mature and secondary TMCF are not regarded as of high value for timber harvesting (Scatena et al., 2011; Toledo-Aceves et al., 2011). Nevertheless, unplanned selective logging is a customary subsistence practice among forest owners (Toledo-Aceves et al., 2011; Bárcenas & Ordóñez, 2008; Ortiz-Colín, Toledo-Aceves, López-Barrera, & Gerez-Fernández, 2017). Extraction of TMCF tree species from remnant forest fragments with no management planning contributes to increased degradation and the depletion of valuable species in these forests and can ultimately lead to their transformation into agriculture land and pine plantations (Ramírez-Marcial, González-Espinosa, & Williams-Linera, 2001; Haeckel 2006; Rüger, Williams-Linera, Kissling, & Huth, 2008; Paré & Gerez 2012). The lack of management strategies is exacerbated by a lack of pertinent information for the silvicultural management of TMCF species (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [Conabio], 2010). As a result of TMCF deforestation and illegal logging, 60% of TMCF tree species in Mexico are in some category of threat (González-Espinoza, Meave, Lorea-Hernández, Ibarra-Manríquez, & Newton, 2011).

TMCF species have shown promising potential for timber harvesting where appropriate management schemes are put into place (aus der Beek & Saenz, 1996; Saénz & Guariguata, 2001; Guariguata & Saénz, 2002). Planned selective logging could provide income through the commercialization of timber and promote the maintenance of forest cover and habitats as well as contributing to ensuring the provision of ecosystem services (Porter-Bolland et al., 2011; Putz et al., 2012). Previous studies indicate that several TMCF species-such as Alnus acuminata, Fraxinus uhdeii, Clethra macrophyla and various species of Quercus-produce good quality timber for construction, poles, furniture and paper (Tamarit Urias, 1996; Bárcenas & Ordóñez, 2008). However, the growth rate of most TMCF species remains to be determined (Williams-Linera, 1996); the lack of this key information prevents the determination of sustainable harvesting rates for these native tree species (Conabio, 2010). Information on individual tree diameter growth, and its response to environmental variables, is necessary to select which tree to cut, to estimate cutting cycles and to prescribe adequate silvicultural treatments (Pereira et al., 2002).

Tree growth in natural populations usually exhibits a wide variation that is affected by biotic and abiotic factors (Harper, 1977; Burkhart & Tomé, 2012). Climatic factors such as temperature and precipitation have a strong influence on tree growth (Dong et al., 2012), as do biotic interactions such as competition for light, water and nutrients (Canham et al., 2006; Saenz & Guariguata, 2001). Individual tree growth in young secondary evergreen broadleaf forest in China was found to be largely a function of competition with neighbouring trees (von Oheimb et al., 2011). Light availability is one of the most important factors regulating tree growth and is a key factor that is frequently manipulated in silvicultural schemes to promote tree development (Lamprecht, 1989). However, the influence of environmental factors, such as the light availability and the competition with neighboring trees, on variation in the growth rates of TMCF tree species has not been assessed. While the potential role of secondary tropical forests as a timber source is widely recognized, there is limited information available with which to design effective management schemes (Henao, Ordóñez, de Camino, Villalobos, & Carrera, 2015). Understanding the factors that influence tree growth in early successional stands is important to accurately determine timber yields in secondary tropical forests, which are characterized by mixed-species and uneven-aged stands (Adame, Brandeis, & Uriarte, 2014).

Objectives

In order to contribute to the sustainable management of TMCF, the objective of this study was to determine the diametric growth rates of three common tree species of commercial value in secondary TMCF and to evaluate the influence of tree size, crown class and competition on their growth rates in Mexico.

Materials and methods

Species

The tree species selected for study were Alnus acuminata Kunth (Betulaceae), Liquidambar styraciflua L. (Altingiaceae) and Quercus xalapensis Bonpl. (Fagaceae), all of which are locally important for the production of timber, firewood and charcoal. Alnus acuminata and L. styraciflua are light-demanding or pioneer species that require open areas for early establishment (Niembro, Morato, & Cuevas, 2004), while Q. xalapensis is of intermediate shade tolerance, establishes under the closed forest canopy and can display high growth rates in open areas (Álvarez-Aquino, Williams‐Linera, & Newton, 2004; Niembro et al., 2004; Muñiz-Castro, Williams‐Linera, & Benítez‐Malvido, 2015). According to the Red List of Mexican Cloud Forest Trees, A. acuminata and L. styraciflua are classified as being of least concern, while Q. xalapensis is critically endangered (González-Espinosa et al., 2011).

Study sites

The study region is located in the mountainous watershed of the River Pixquiac in central Veracruz, Mexico. The annual mean temperature in the region is 14 °C - 16 °C and annual precipitation ranges between 1500 mm and 1800 mm (Paré & Gerez, 2012). The study was carried out from June 2012 to July 2014, in secondary TMCF fragments with no management, and which met the following requirements: forest fragment area ~1 ha, an absence of cattle inside the forest, slope ≤ 40°, dominance in the canopy of the tree species selected including natural regeneration, a minimum number of 30 trees per species covering a range of sizes, and permission from the forest owners. All the sites were the result of natural regeneration after pasture abandonment. Based on the land use dynamics in the region, the estimated age of study sites is ~30 years (Paré & Gerez, 2012). The selected tree species were studied in two different sites (Table 1). The soil at all the sites is classified as an Umbric Andosol (Geissert, 2007).

Table 1

Characteristics of tropical montane cloud forest sites for the assessment of diameter tree growth rates, Veracruz, Mexico.

Site Alnus acuminata Liquidambar styraciflua Quercus xalapensis
Coordinates 1 19° 30' 20" N
97° 00' 77" W
19° 31' 65" N
96° 59' 23" W
19° 31' 32" N
96° 58' 51" W
2 19° 31' 53" N
97° 02' 33" W
19° 30' 73" N
97° 01' 01" W
19° 31' 98" N
97° 00' 48" W
Elevation (m a.s.l.) 1 1720 1467 1451
2 2205 1849 1672
Aspect 1 NE E SE
2 SE E E
Slope (°) 1 35 30 15
2 30 25 15
Basal area (m2/ha) 1 9.1 ± 0.91 16 ± 1 16 ± 0.5
2 9.0 ± 0.60 13 ± 1 11 ± 0.9

Experimental design and measurements

For each species, 30 trees were selected at each site, comprising a range of sizes between 10 cm and 45 cm of diameter at breast height (dbh). In total, 60 individuals per species were measured. The selected trees had to meet the following criteria: healthy, with no bifurcation below 1.3 m in height and no mechanical damage. Based on crown position, every individual was classified into one of the following crown categories: dominant, co-dominant and supressed (Jennings, Brown, & Sheil, 1999). Dominant tree crowns extended over the canopy, receiving full sunlight on the top of the crown and partial sunlight on the sides. Co-dominant trees form the general canopy, receiving full sunlight on top but minimal light at the sides of the crown. Suppressed trees are positioned below the general canopy, receiving no direct sunlight on either the top or sides of the crown; some juvenile trees may have been included in the latter category.

On each tree, a steel band-dendrometer (Liming, 1957) was fixed to the trunk at height 1.30 m to measure growth circumference with digital callipers at 0 months, 12 months and 24 months. In temperate species, growth studies measure annual rings or use stem analysis, but most tropical species lack annual growth rings, and therefore permanent plots and periodic measurements of diameter and height are used. Given that it remains to be evaluated whether most TMCF tree species in the study region form annual rings, we used band dendrometers, which are reported as one of the most accurate methods for detecting even slight growth (Baker, Affum-Baffoe, Burslem, & Swaine, 2002; Sheil, 2003).

The basal area of neighbouring trees was used as a surrogate for competition (Biging & Dobbertin, 1992). For this, the basal area of all the trees surrounding each individual study tree was estimated using a Cruz-All basal area forest stand gauge (Jim-Gem®) (Kerhoulas, Kolb, & Koch, 2013). The number of neighbouring trees around the measured tree was quantified (using the English basal area factor 5) and then multiplied by 1.148, as proposed by Larsen (2007), to obtain the total basal area (m2 ha-1) of neighbouring trees. The factor 5 was used given the low tree density and predominance of small trees at the study sites (Avery & Burkhart, 1983).

Data analysis

A general linear model (GLM) was used to evaluate the fixed effects of initial tree diameter (covariate), neighbouring tree basal area (covariate), crown class (factor with three levels), and site (factor with two levels) on the diameter growth rate of each species. Site was considered as a fixed factor based on the recommendation by Bolker (2015). Model fit was assessed by evaluating residual plots, which presented in all cases a distribution that was close to normal. The best model was selected based on the Akaike information criterion (AIC). All statistical analyses were run in R, version 3.3.3 (R Core Team 2017, https://www.R-project.org/). The mean growth values calculated from two years of measurements were used.

Results

Overall, the highest diameter growth rate was recorded for Acuminate (mean ± SE; 1.62 cm yr-1 ± 0.08 cm yr-1), followed by Q. xalapensis (0.91 cm yr-1 ± 0.07 cm yr-1) and L. styraciflua (0.71 cm yr-1 ± 0.08 cm yr-1). Based on the AIC, initial tree size (dbh) was removed from the models explaining the growth of Acuminate and Q. xalapensis, and in the case of L. styraciflua, diameter growth decreased with tree size (Table 2; Fig. 1). Crown class had a significant effect on diameter growth rates; dominant trees had higher growth rates than supressed trees in all three species studied (Table 2; Fig. 2). The analyses showed that the neighbouring tree basal area values have a strong influence on tree growth of the species studied; in these secondary forests with no management, diameter growth rates decreased with increasing neighbouring tree basal area (Fig. 3). Growth of Acuminate differed between stands, with a higher growth rate recorded in stand 1 than in stand 2 (Table 2).

Table 2

General linear model for the effect of tree size, crown class (dominant, co-dominant and supressed), neighbouring tree basal area and stand on the diameter growth rates of cloud forest tree species.

Alnus acuminata Liquidambar styraciflua Quercus xalapensis
Coefficient P Coefficient P Coefficient P
R 2 0.462 0.465 0.322
Intercept 2.24 ± 0.161 <0.0001 1.981 ± 0.228 <0.0001 1.536 ± 0.169 <0.0001
DBH -0.018 0.014
Crown class 2 0.11 ± 0.128 0.38 -0.304 ± 0.134 0.028 -0.225 ± 0.128 0.085
Crown class 3 -0.48 ± 0.203 0.021 -0.517 ± 0.194 0.010 -0.672 ± 0.179 0.0004
BA -0.040 ± 0.014 0.008 -0.041 ± 0.009 <0.0001 -0.031 ± 0.012 0.014
Site -0.510 ± 0.119 <0.0001

[i] DBH = diameter at breast height, BA = neighbouring tree basal area. B = Coefficient ± SE, P = probability of Type I error.

Figure 1

Diameter growth rate (cm yr-1) and tree diameter at breast height (DBH; cm) in tropical montane cloud forest tree species (N = 60). Diameter growth decreased with DBH in Liquidambar (P = 0.014; see table 2 for the full model).

2448-7597-mb-25-03-e2531824-gf1.png

Figure 2

Diameter growth rates per crown class in tropical montane cloud forest tree species: 1 = dominant, 2 = co-dominant and 3= supressed (N = 20). Growth rate was higher in dominant trees than in suppressed trees in all three study species (P < 0.05; see table 2 for the full model).

2448-7597-mb-25-03-e2531824-gf2.png

Figure 3

Relationship between diameter growth rate (cm yr-1) and the neighbouring tree basal area (m2 ha-1) in tropical montane cloud forest tree species (N = 60). Diameter growth decreased with increasing neighbouring tree basal area in all three study species (P < 0.05; see table 2 for the full model).

2448-7597-mb-25-03-e2531824-gf3.png

Discussion

At present, secondary and degraded forests cover a larger area than primary forest in tropical landscapes (Chazdon, 2003; Food and Agricultural Organization [FAO], 2015). In Mexico a steady expansion of secondary forests has been reported (Rosete-Vergés et al., 2014). Their role in the conservation of biodiversity and provision of timber and non-timber products has been the subject of increasing attention (Finegan, 1992; Chazdon et al., 2009). The estimated growth rates of the species studied demonstrate their potential for inclusion in management programs for timber production in secondary TMCF. The mean growth rate found for A. acuminata is very high, considering that the study was conducted in forest sites with no management, and is similar to the growth rate of 1.725 cm yr-1 reported for a monospecific plantation of this species in Costa Rica (Centro Agronómico Tropical de Investigación y Enseñanza [CATIE], 1995). By comparison, Pinus patula was reported to have a growth rate of 1.03 cm yr-1 in managed forests in the studied region (Alvarez, 2001). In the study region, forest owners are encouraged to replace areas of secondary TMCF with P. patula plantations as part of reforestation programs (Paré & Gerez, 2012). This pine species, endemic to Mexico, is the most popular species for reforestation programs in humid montane forests and the establishment of commercial forest plantations in Latin America (Sáenz-Romero, Snively, & Lindig-Cisneros, 2003; Wright, DiNicola, & Gaitan, 2000). Our results show that the TMCF tree species studied, such as A. acuminata, can display similar or even superior growth rates to those of Pinus species in managed forests in the same region (Álvarez, 2001).

In comparison to the growth rate reported in a protected area in Xalapa, Veracruz, Mexico, the mean growth rate found was lower for L. styraciflua and higher for Q. xalapensis (1.47 cm yr-1 and 0.43 cm yr-1, respectively; Williams-Linera, 1996). Given the fact that both crown position and basal area of neighbours had significant influence on growth rates, comparisons are difficult since these variables were not assessed in the study of Williams-Linera (1996). Given the limited studies of TMCF, we compared our results with data reported for a lowland secondary forest in Puerto Rico and found that the growth rates measured in our study are considerably higher (0.21 cm y-1 reported in Weaver & Birdsey, 1990). However, it should be considered that tree growth rates in secondary forests are highly variable, with important differences between species, stand ages, densities and forest types (Brown & Lugo, 1990; Akindele & Onyekwelu, 2011).

Initial tree size had a significant effect on growth rate in L. styraciflua; growth rates were slower in bigger trees, a common pattern in tropical tree species (Lamprecht, 1989). In agreement with our findings, Clark and Clark (1999) concluded that the diameter growth pattern is highly dependent on tree size. This information could be useful in determining cutting cycles for these species in secondary TMCF. The small contribution of tree size to explaining the variation in growth in the other species was probably due to the important role played by competition in the unmanaged forests studied. Since increased tree growth occurs as a result of reduced competition via harvesting (Burkhart & Tomé, 2012), selective cutting as part of silvicultural treatments can be expected to increase growth rates. Previous studies in Costa Rican montane forests report a significant increase in the growth rate of juvenile (Saenz & Guariguata, 2001) and adult (aus der Beek & Saenz, 1996) trees, following timber harvesting intensity of 20% to 30% of stand basal area. Evaluating the effects of silvicultural experiments, such as liberation thinning to release future crop trees and increase their growth rates, would provide valuable information with which to advance the management of secondary TMCF.

Since band-dendrometers are sensitive to millimetric fluctuations in diameter, measurements can be affected by differences in both timing and climate (Sheil, 2003). Thus, measurements taken over longer periods of time would be required to assess the influence of environmental factors with confidence. The only species that displayed any differences between sites was A. acuminata, the higher growth rate in site 1 could be associated with its location at an elevation 500 m lower than that of site 2, reflecting the plasticity of this species in response to changes in environmental factors. Warmer temperatures at lower elevations have been reported to enhance tree growth (Way & Oren, 2010).

Promoting local management strategies that integrate the economic needs of forest owners with diverse alternatives and intensities of silvicultural treatments is fundamental to the conservation and sustainable management of TMCF at landscape level (Toledo-Aceves et al., 2011). The study species could provide timber, firewood and charcoal to meet local demand if planned management schemes for secondary forest are applied. Quercus species in general are preferred for the production of firewood and charcoal (Haeckel, 2006), fuelwood sources that play an important role in the energy security of rural communities and, more recently, meet an increased urban demand due to use in restaurants (Mwampamba, Ghilardi, Sander, & Chaix, 2013). Alnus acuminata is valued for the construction of furniture due to its moderately light wood and excellent workability (Ruso, 1994). It has also been shown to be useful for soil improvement since it is a nitrogen-fixing species (Ngom et al., 2016). Furthermore, the shade created by A. acuminata plantations could assist in the suppression of the bracken fern Pteridium aquilinum, an invasive species that can arrest secondary succession in degraded soils (Avendaño-Yañez, Sánchez-Velásquez, Meave, & Pineda-López, 2014). Overall, our results show that the studied species have potential for the diversified management of TMCF, which could have a positive effect on both biodiversity conservation and the local economy.

Conclusions

Based on the high growth rates recorded, our results support that the species studied have great potential for timber, firewood and charcoal production in secondary TMCF forests. The negative influence of the basal area of neighbouring trees on growth rates indicates that the application of silvicultural treatments to reduce competition may serve to increase the productivity of the tree species studied. The design of appropriate management schemes for harvesting secondary TMCF could enable the conservation of these species, while contributing to the maintenance of these forests and local livelihoods.

Acknowledgements

MMH gratefully acknowledges the award of a Conacyt grant (no. 269411) to carry out his MSc thesis. We are grateful to the Overbrook Foundation for funding the field study; to the forest owners for granting permission to conduct the study on their land; to L. Raúl Álvarez, Jorge López Portillo and Rosa Amelia Pedraza for their suggestions on the MSc Thesis, and to Michael Swaine and two anonymous reviewers for useful criticism on a previous version. We are grateful to Keith Macmillan for English revision.

References

1 

Adame, P., Brandeis, T. J., & Uriarte, M. (2014). Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests. Forest Systems, 23(1), 52-63. doi: 10.5424/fs/2014231-03644

P. Adame T. J. Brandeis M. Uriarte 2014Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forestsForest Systems231526310.5424/fs/2014231-03644

2 

Akindele, S. O. & Onyekwelu, J. C. (2011). Review silviculture in secondary forests. In S. Günter, M. Weber, B. Stimm, & R. Mosandl (Eds.), Silviculture in the Tropics (pp. 351-367). Germany: Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-19986-8_23

S. O. Akindele J. C. Onyekwelu 2011Review silviculture in secondary forests S. Günter M. Weber B. Stimm R. Mosandl Silviculture in the Tropics351367GermanySpringer, Berlin, Heidelberg10.1007/978-3-642-19986-8_23

3 

Álvarez, R. (2001). Determinación de turnos para las principales especies de coníferas en la región del Cofre de Perote, Veracruz. MSc thesis, Universidad Veracruzana, Veracruz, Mexico.

R. Álvarez 2001Determinación de turnos para las principales especies de coníferas en la región del Cofre de Perote, VeracruzMSc thesisUniversidad VeracruzanaVeracruz, MexicoVeracruz, Mexico

4 

Álvarez‐Aquino, C., Williams‐Linera, G., & Newton, A. C. (2004). Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restoration Ecology, 12(3), 412-418. doi: 10.1111/j.1061-2971.2004.00398.x

C. Álvarez‐Aquino G. Williams‐Linera A. C. Newton 2004Experimental native tree seedling establishment for the restoration of a Mexican cloud forestRestoration Ecology12341241810.1111/j.1061-2971.2004.00398.x

5 

Avendaño-Yáñez, M. L., Sánchez-Velásquez, L. R., Meave, J. A., & Pineda-López, M. R. (2014). Is facilitation a promising strategy for cloud forest restoration? Forest Ecology and Management, 329, 328-333. doi: 10.1016/j.foreco.2014.01.051

M. L. Avendaño-Yáñez L. R. Sánchez-Velásquez J. A. Meave M. R. Pineda-López 2014Is facilitation a promising strategy for cloud forest restoration?Forest Ecology and Management32932833310.1016/j.foreco.2014.01.051

6 

Avery, T. E. & Burkhart, H. E. (1983). Forest measurements. New York, United States of America: McGraw Hill.

T. E. Avery H. E. Burkhart 1983Forest measurementsNew YorkUnited States of America: McGraw Hill

7 

aus der Beek, R. & Sáenz, G. (1996). Impacto de las intervenciones silviculturales en los robledales de altura: estudio de caso en la Cordillera de Talamanca, Costa Rica. Revista Forestal Centroamericana 17, 30-37.

R. aus der Beek G. Sáenz 1996Impacto de las intervenciones silviculturales en los robledales de altura: estudio de caso en la Cordillera de Talamanca, Costa RicaRevista Forestal Centroamericana173037

8 

Baker, T., Affum-Baffoe, K., Burslem, D., & Swaine, M. (2002). Phenological differences in tree water use and the timing of tropical forest inventories: conclusions from patterns of dry season diameter change. Forest Ecology and Management 171, 261-274. doi: 10.1016/S0378-1127(01)00787-3

T. Baker K. Affum-Baffoe D. Burslem M. Swaine 2002Phenological differences in tree water use and the timing of tropical forest inventories: conclusions from patterns of dry season diameter changeForest Ecology and Management17126127410.1016/S0378-1127(01)00787-3

9 

Bárcenas, G. M. & Ordoñez-Candelaria, V. R. (2008). Calidad de la madera de los árboles de sombra. In R.H. Manson, V. Hernandez-Ortiz, S. Gallina, & K. Mehltreter (Eds.), Agroecosistemas cafetaleros de Veracruz: Biodiversidad, manejo y conservación (pp. 235-246). Mexico: Instituto de Ecología, A.C.

G. M. Bárcenas V. R. Ordoñez-Candelaria 2008Calidad de la madera de los árboles de sombra R.H. Manson V. Hernandez-Ortiz S. Gallina K. Mehltreter Agroecosistemas cafetaleros de Veracruz: Biodiversidad, manejo y conservación235246MexicoInstituto de Ecología, A.C.

10 

Biging, G. S. & Dobbertin, M. (1992). A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. Forest Science 38, 695-720. doi: 10.1093/forestscience/38.3.695

G. S. Biging M. Dobbertin 1992A comparison of distance-dependent competition measures for height and basal area growth of individual conifer treesForest Science3869572010.1093/forestscience/38.3.695

11 

Bray, D., Merino-Pérez, L., & Barry, D. (2005). The community forests of Mexico: Managing for sustainable landscapes. United States of America: University of Texas Press.

D. Bray L. Merino-Pérez D. Barry 2005The community forests of Mexico: Managing for sustainable landscapesUnited States of AmericaUniversity of Texas Press

12 

Brown, S. & Lugo, A. E. (1990). Tropical secondary forests. Journal of Tropical Ecology 6(1), 1-32. doi: 10.1017/S0266467400003989

S. Brown A. E. Lugo 1990Tropical secondary forestsJournal of Tropical Ecology6113210.1017/S0266467400003989

13 

Burkhart, H. E. & Tomé, M. (2012). Modeling forest trees and stands. Springer. doi 10.1007/978-90-481-3170-9_9

H. E. Burkhart M. Tomé 2012Modeling forest trees and standsSpringer10.1007/978-90-481-3170-9_9

14 

Canham, C., Papaik, M. J., Uriarte, M. , McWilliams, W. H., Jenkins, J. C., & Twery, M. J. (2006). Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. Ecological Applications 16(2), 540-554.

C. Canham M. J. Papaik M. Uriarte W. H. McWilliams J. C. Jenkins M. J. Twery 2006Neighborhood analyses of canopy tree competition along environmental gradients in New England forestsEcological Applications162540554

15 

Centro Agronómico Tropical de Investigación y Enseñanza [CATIE] (1995). Alnus acuminata ssp. arguta (Schlechtendal) Furlow, especie de árbol de uso múltiple en América Central, (pp. 37) Turrialba, Costa Rica: CATIE.

Centro Agronómico Tropical de Investigación y Enseñanza 1995Alnus acuminata ssp. argutaFurlow, especie de árbol de uso múltiple en América Central3737Costa Rica

16 

Challenger, A., Dirzo, R., López, J. C., Mendoza, E., Lira-Noriega, A., & Cruz, I. (2009). Factores de cambio y estado de la biodiversidad.Capital Natural de México II: Estado de conservación y tendencias de cambio, (pp. 37-73) Mexico: Conabio.

A. Challenger R. Dirzo J. C. López E. Mendoza A. Lira-Noriega I. Cruz 2009Factores de cambio y estado de la biodiversidadCapital Natural de México II: Estado de conservación y tendencias de cambio3773MexicoConabio

17 

Chazdon, R. L. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics 6 (1-2), 51-71. doi: 10.1078/1433-8319-00042

R. L. Chazdon 2003Tropical forest recovery: legacies of human impact and natural disturbancesPerspectives in Plant Ecology, Evolution and Systematics61-2517110.1078/1433-8319-00042

18 

Chazdon, R. L., Peres, C. A., Dent, D., Sheil, D., Lugo, A. E. , Lamb, D., Stork, N., & Miller, S. E. (2009). The potential for species conservation in tropical secondary forests.Conservation Biology 23 (6), 1406-1417. doi: 10.1111/j.1523-1739.2009.01338.x

R. L. Chazdon C. A. Peres D. Dent D. Sheil A. E. Lugo D. Lamb N. Stork S. E. Miller 2009The potential for species conservation in tropical secondary forestsConservation Biology2361406141710.1111/j.1523-1739.2009.01338.x

19 

Clark, D. A. & Clark, D. B. (1999). Assessing the growth of tropical rain forest trees: issues for forest modelling and management. Ecological Applications 9 (3), 981-997. doi: 10.1890/1051-0761(1999)009[0981:ATGOTR]2.0.CO;2

D. A. Clark D. B. Clark 1999Assessing the growth of tropical rain forest trees: issues for forest modelling and managementEcological Applications9398199710.1890/1051-0761(1999)009[0981:ATGOTR]2.0.CO;2

20 

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [Conabio] (2010). El bosque mesófilo de montaña en México: Amenazas y Oportunidades para su conservación y manejo sustentable. Toledo-Aceves, T. (Ed). Mexico: Conabio.

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad 2010El bosque mesófilo de montaña en México: Amenazas y Oportunidades para su conservación y manejo sustentable T. Toledo-Aceves MexicoConabio

21 

Dong, S. X., Davies, S. J., Ashton, P. S., Bunyavejchewin, S., Supardi, M. N., Kassim, A. R., ... & Moorcroft, P. R. (2012). Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests. Proceedings of the Royal Society B: Biological Sciences 279 (1744), 3923-3931. doi: 10.1098/rspb.2012.1124

S. X. Dong S. J. Davies P. S. Ashton S. Bunyavejchewin M. N. Supardi A. R. Kassim P. R. Moorcroft 2012Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forestsProceedings of the Royal Society B: Biological Sciences27917443923393110.1098/rspb.2012.1124

22 

Food and Agricultural Organization [FAO] (2015). Global Forest Resource Assessment. Rome, Italy: FAO.

Food and Agricultural Organization 2015Global Forest Resource AssessmentRome, ItalyFAO

23 

Finegan, B. (1992). The management potential of neotropical secondary lowland rain forest. Forest Ecology and Management 47, 295-321. doi: 10.1016/0378-1127(92)90281-D

B. Finegan 1992The management potential of neotropical secondary lowland rain forestForest Ecology and Management4729532110.1016/0378-1127(92)90281-D

24 

Geissert, D. (2007). Mapa de geomorfología, cuenca alta del río La Antigua, escala 1:50 000. Xalapa, Veracruz, Mexico: Instituto de Ecología, A.C.

D. Geissert 2007Mapa de geomorfología, cuenca alta del río La Antigua, escala 1:50 000Xalapa, Veracruz, MexicoInstituto de Ecología, A.C.

25 

González-Espinosa, M., Meave, J. A. , Lorea-Hernández, F. G., Ibarra-Manríquez, G., & Newton, A. (2011). The red list of Mexican cloud forest trees. Cambridge, UK: Fauna & Flora International.

M. González-Espinosa J. A. Meave F. G. Lorea-Hernández G. Ibarra-Manríquez A. Newton 2011The red list of Mexican cloud forest treesCambridge, UKFauna & Flora International

26 

Guariguata, M. R. & Sáenz, G. P. (2002). Post-logging acorn production and oak regeneration in a tropical montane forest, Costa Rica. Forest Ecology and Management 167, 285-293. doi: 10.1016/S0378-1127(01)00700-9

M. R. Guariguata G. P. Sáenz 2002Post-logging acorn production and oak regeneration in a tropical montane forest, Costa RicaForest Ecology and Management16728529310.1016/S0378-1127(01)00700-9

27 

Haeckel, I. (2006). Firewood use, supply, and harvesting impact in cloud forests of central Veracruz, Mexico. BSc thesis. Columbia University, NY, USA.

I. Haeckel 2006Firewood use, supply, and harvesting impact in cloud forests of central Veracruz, MexicoBSc thesisColumbia UniversityNY, USANY, USA

28 

Henao, E., Ordóñez, Y., de Camino, R., Villalobos, R., & Carrera, F. (2015). El bosque secundario en Centroamérica: Un recurso potencial de uso limitado por procedimientos y normativas inadecuadas. Boletín Técnico no. 77. Costa Rica: CATIE.

E. Henao Y. Ordóñez R. de Camino R. Villalobos F. Carrera 2015El bosque secundario en Centroamérica: Un recurso potencial de uso limitado por procedimientos y normativas inadecuadasBoletín Técnico no. 77Costa RicaCATIE

29 

Harper, J. L. (1977). Population Biology of Plants. Academic Press.

J. L. Harper 1977Population Biology of PlantsAcademic Press

30 

Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry: An International Journal of Forest Research 72 (2), 59-74. doi.: 10.1093/forestry/72.1.59

S. B. Jennings N. D. Brown D. Sheil 1999Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. ForestryAn International Journal of Forest Research722597410.1093/forestry/72.1.59

31 

Kerhoulas, L. P., Kolb, T. E., & Koch, G. W. (2013). Tree size, stand density, and the source of water used across seasons by ponderosa pine in northern Arizona. Forest Ecology and Management 289, 425-433. doi: 10.1016/j.foreco.2012.10.036

L. P. Kerhoulas T. E. Kolb G. W. Koch 2013Tree size, stand density, and the source of water used across seasons by ponderosa pine in northern ArizonaForest Ecology and Management28942543310.1016/j.foreco.2012.10.036

32 

Lamprecht, H. (1989). Silviculture in the Tropics. Technical Cooperation-Federal Republic of Germany.

H. Lamprecht 1989Silviculture in the TropicsTechnical Cooperation-Federal Republic of Germany

33 

Larsen, D. (2007). Common Basal Area Factors Values. Forestry Suppliers. URL: http://www.forestry-suppliers.com/

D. Larsen 2007Common Basal Area Factors ValuesForestry Suppliershttp://www.forestry-suppliers.com/

34 

Liming, F. G. (1957). Homemade dendrometers. Journal of Forestry 55, 555-577. doi: 10.1093/jof/55.8.575

F. G. Liming 1957Homemade dendrometersJournal of Forestry5555557710.1093/jof/55.8.575

35 

Martínez, M. L., Pérez-Maqueo, O., Vázquez, G., Castillo-Campos, G., García-Franco, J., Mehltreter, K., Equihua, M., & Landgrave, R. (2009). Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. Forest Ecology and Management 258, 1856-1863. doi: 10.1016/j.foreco.2009.02.023

M. L. Martínez O. Pérez-Maqueo G. Vázquez G. Castillo-Campos J. García-Franco K. Mehltreter M. Equihua R. Landgrave 2009Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of MexicoForest Ecology and Management2581856186310.1016/j.foreco.2009.02.023

36 

Muñiz‐Castro, M. A., Williams‐Linera, G. , & Benítez‐Malvido, J. (2015). Restoring montane cloud forest: establishment of three Fagaceae species in the old fields of central Veracruz, Mexico. Restoration Ecology 23, 26-33. doi: 10.1111/rec.12155

M. A. Muñiz‐Castro G. Williams‐Linera J. Benítez‐Malvido 2015Restoring montane cloud forest: establishment of three Fagaceae species in the old fields of central Veracruz, MexicoRestoration Ecology23263310.1111/rec.12155

37 

Mwampamba, T. H., Ghilardi, A., Sander, K., & Chaix, K. J. (2013). Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy for Sustainable Development 17, 75-85. doi: 10.1016/j.esd.2013.01.001

T. H. Mwampamba A. Ghilardi K. Sander K. J. Chaix 2013Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countriesEnergy for Sustainable Development17758510.1016/j.esd.2013.01.001

38 

Ngom, M., Oshone, R., Diagne, N., Cissoko, M., Svistoonoff, S., Tisa, L.S., Laplaze, L., Oureye, S. M., & Champion, A. (2016). Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation. Symbiosis 70, 17-29. doi: 10.1007/s13199-016-0396-9

M. Ngom R. Oshone N. Diagne M. Cissoko S. Svistoonoff L.S. Tisa L. Laplaze S. M. Oureye A. Champion 2016Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptationSymbiosis70172910.1007/s13199-016-0396-9

39 

Niembro, A., Morato, I., & Cuevas, J. (2004). Catálogo de frutos y semillas de árboles y arbustos de valor actual y potencial para el desarrollo forestal de Veracruz y Puebla. Departamento de Productos Forestales y Conservación de Bosques. Veracruz, Mexico: INECOL.

A. Niembro I. Morato J. Cuevas 2004Catálogo de frutos y semillas de árboles y arbustos de valor actual y potencial para el desarrollo forestal de Veracruz y Puebla. Departamento de Productos Forestales y Conservación de BosquesVeracruz, MexicoINECOL

40 

Ortiz-Colín, P., Toledo-Aceves, T. , López-Barrera, F., & Gerez-Fernández, P. (2017). Can traditional selective logging secure tree regeneration in cloud forest? iForest 10, 369-375. doi: 10.3832/ifor1937-009

P. Ortiz-Colín T. Toledo-Aceves F. López-Barrera P. Gerez-Fernández 2017Can traditional selective logging secure tree regeneration in cloud forest?iForest1036937510.3832/ifor1937-009

41 

Paré, O. L. & Gerez, P. (2012). Al filo del agua: Cogestión de la subcuenca del río Pixquiac, Veracruz. Mexico: Juan Pablos Editores.

O. L. Paré P. Gerez 2012Al filo del agua: Cogestión de la subcuenca del río Pixquiac, VeracruzMexicoJuan Pablos Editores

42 

Pereira da Silva, R., dos Santos, J., Tribuzy, E. S., Chambers, J. Q., Nakamura, S., & Higuchi, N. (2002). Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. Forest Ecology and Management 166, 295-301. doi: 10.1016/S0378-1127(01)00678-8

R. Pereira da Silva J. dos Santos E. S. Tribuzy J. Q. Chambers S. Nakamura N. Higuchi 2002Diameter increment and growth patterns for individual tree growing in Central Amazon, BrazilForest Ecology and Management16629530110.1016/S0378-1127(01)00678-8

43 

Porter-Bolland, L., Ellis, E.A., Guariguata, M.R., Ruiz-Mallén, I., Negrete-Yankelevich, S., & Reyes-García, V. (2012). Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. Forest Ecology and Management 268, 6-17. doi: 10.1016/j.foreco.2011.05.034

L. Porter-Bolland E.A. Ellis M.R. Guariguata I. Ruiz-Mallén S. Negrete-Yankelevich V. Reyes-García 2012Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropicsForest Ecology and Management26861710.1016/j.foreco.2011.05.034

44 

Putz, F. E., Zuidema, P. A., Synnott, T., Peña-Claros, M., Pinard, M. A., Sheil, D. , Vanclay, J. K., Sist, P., Gourlet-Fleury, S., Griscom, B., Palmer, J. & Zagt, R. (2012). Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conservation Letters 5, 296-303. doi: 10.1111/j.1755-263X.2012.00242.x

F. E. Putz P. A. Zuidema T. Synnott M. Peña-Claros M. A. Pinard D. Sheil J. K. Vanclay P. Sist S. Gourlet-Fleury B. Griscom J. Palmer R. Zagt 2012Sustaining conservation values in selectively logged tropical forests: the attained and the attainableConservation Letters529630310.1111/j.1755-263X.2012.00242.x

45 

Ramírez-Marcial, N., González-Espinosa, M. , & Williams-Linera, G. (2001). Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. Forest Ecology and Management 154, 311-326. doi: 10.1016/S0378-1127(00)00639-3

N., Ramírez-Marcial M. González-Espinosa G. Williams-Linera 2001Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, MexicoForest Ecology and Management15431132610.1016/S0378-1127(00)00639-3

46 

Rosete-Vergés, F. A., Pérez-Damián, J. L., Villalobos-Delgado, M., Navarro-Salas, E. N., Salinas-Chávez, E., & Remond-Noa, R. (2014) El avance de la deforestación en México 1976- 2007. Madera y Bosques, 20(1), 21-35. doi: 10.21829/myb.2014.201173

F. A. Rosete-Vergés J. L. Pérez-Damián M. Villalobos-Delgado E. N. Navarro-Salas E. Salinas-Chávez R. Remond-Noa 2014El avance de la deforestación en México 1976- 2007Madera y Bosques201213510.21829/myb.2014.201173

47 

Rüger, N., Williams-Linera, G. , Kissling, W. D., & Huth, A. (2008). Long-term impacts of fuelwood extraction on a Tropical Montane Cloud Forest. Ecosystems 11, 868-881. doi: 10.1007/s10021-008-9166-8

N. Rüger G. Williams-Linera W. D. Kissling A. Huth 2008Long-term impacts of fuelwood extraction on a Tropical Montane Cloud ForestEcosystems1186888110.1007/s10021-008-9166-8

48 

Ruso, R. O. (1994). Alnus acuminata: valuable timber tree for tropical highlands. Forest, Farm, and Community Tree Network URL: (NFTA) 94-03. Arkansas, USA. URL: http://usi.earth.ac.cr/glas/sp/50000066.PDF

R. O. Ruso 1994Alnus acuminata: valuable timber tree for tropical highlandsForest, Farm, and Community Tree Network9403Arkansas, USAhttp://usi.earth.ac.cr/glas/sp/50000066.PDF

49 

Saenz, G. P. & Guariguata, M. R. (2001). Demographic response of tree juveniles to reduced-impact logging in a Costa Rican montane forest. Forest Ecology and Management 140, 75-84. doi: 10.1016/S0378-1127(00)00278-4

G. P. Saenz M. R. Guariguata 2001Demographic response of tree juveniles to reduced-impact logging in a Costa Rican montane forestForest Ecology and Management140758410.1016/S0378-1127(00)00278-4

50 

Sáenz-Romero, C., Snively, A. E., & Lindig-Cisneros, R. (2003). Conservation and restoration of pine forest genetic resources in Mexico. Silvae Genetica 52, 233-236. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/2003/Vol._52_Heft_5-6/52_5-6_233.pdf

C. Sáenz-Romero A. E. Snively R. Lindig-Cisneros 2003Conservation and restoration of pine forest genetic resources in MexicoSilvae Genetica52233236https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/2003/Vol._52_Heft_5-6/52_5-6_233.pdf

51 

Scatena, F. N., Bruijnzeel, L.A., Bubb, P., & Das, S. (2011). Setting the stage. InBruijnzeel, L.A. , Scatena, F.N., & Hamilton, L.S. (Eds.), Tropical Montane Cloud Forests Science for Conservation and Management (pp. 38-63). UK: Cambridge University Press.

F. N. Scatena L.A. Bruijnzeel P. Bubb S. Das 2011Setting the stage L.A. Bruijnzeel F.N. Scatena L.S. Hamilton Tropical Montane Cloud Forests Science for Conservation and Management3863UKCambridge University Press

52 

Sheil, D. (2003). Growth assessment in tropical trees: large daily diameter fluctuations and their concealment by dendrometer bands. Canadian Journal of Forestry Research 33, 2027-2035. doi: 10.1139/x03-121

D. Sheil 2003Growth assessment in tropical trees: large daily diameter fluctuations and their concealment by dendrometer bandsCanadian Journal of Forestry Research332027203510.1139/x03-121

53 

Tamarit Urias, J. C. (1996). Determinación de los índices de calidad de pulpa para papel de 132 maderas latifoliadas. Madera y Bosques 2(2), 29-41. doi: 10.21829/myb.1996.221384

J. C. Tamarit Urias 1996Determinación de los índices de calidad de pulpa para papel de 132 maderas latifoliadasMadera y Bosques22294110.21829/myb.1996.221384

54 

Toledo-Aceves, T. , Meave, J.A., González-Espinoza, M., & Ramírez-Marcial, N. (2011). Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. Journal of Environmental Management 92, 974-981. doi: 10.1016/j.jenvman.2010.11.007

T. Toledo-Aceves J.A. Meave M. González-Espinoza N. Ramírez-Marcial 2011Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in MexicoJournal of Environmental Management9297498110.1016/j.jenvman.2010.11.007

55 

von Oheimb, G., Lang, A. C., Bruelheide, H., Forrester, D. I., Wäsche, I., Yu, M., & Härdtle, W. (2011). Individual-tree radial growth in a subtropical broad-leaved forest: the role of local neighbourhood competition. Forest Ecology and Management 261, 499-507. doi: 10.1016/j.foreco.2010.10.035

G. von Oheimb A. C. Lang H. Bruelheide D. I. Forrester I. Wäsche M. Yu W. Härdtle 2011Individual-tree radial growth in a subtropical broad-leaved forest: the role of local neighbourhood competitionForest Ecology and Management26149950710.1016/j.foreco.2010.10.035

56 

Way, D. A. & Oren, R. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30, 669-688. doi: 10.1093/treephys/tpq015

D. A. Way R. Oren 2010Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of dataTree Physiology3066968810.1093/treephys/tpq015

57 

Weaver, P. L. & Birdsey, R. A. (1990). Growth of secondary forest in Puerto Rico between 1980 and 1985. Turrialba 40, 12-22. https://www.srs.fs.usda.gov/pubs/ja/ja_weaver001.pdf

P. L. Weaver R. A. Birdsey 1990Growth of secondary forest in Puerto Rico between 1980 and 1985Turrialba401222https://www.srs.fs.usda.gov/pubs/ja/ja_weaver001.pdf

58 

Williams-Linera, G. (1996). Crecimiento diamétrico de árboles caducifolios y perennifolios del bosque mesófilo de montaña en los alrededores de Xalapa. Madera y Bosques 2, 53-65. doi: 10.21829/myb.1996.221386

G. Williams-Linera 1996Crecimiento diamétrico de árboles caducifolios y perennifolios del bosque mesófilo de montaña en los alrededores de XalapaMadera y Bosques2536510.21829/myb.1996.221386

59 

Wright, J. A., DiNicola, A., & Gaitan, E. (2000). Latin American forest plantations: opportunities for carbon sequestration, economic development, and financial returns. Journal of Forestry 98, 20-23. doi: 10.1093/jof/98.9.20

J. A. Wright A. DiNicola E. Gaitan 2000Latin American forest plantations: opportunities for carbon sequestration, economic development, and financial returnsJournal of Forestry98202310.1093/jof/98.9.20

Notes

[2] This paper must be cited as:
Mendoza-Hernández, M., Gerez-Fernández, P., Purata-Velarde, S., & Toledo-Aceves, T. (2019). Growth rates of valuable tree species in secondary tropical montane cloud forests in Mexico: influence of tree size, crown position and competition. Madera y Bosques, 25(3), e2531824. doi: 10.21829/myb.2019.2531824



This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019 Madera y Bosques

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.


Madera y Bosques, Vol. 26, Núm. 2, Verano2020, es una publicación cuatrimestral editada por el Instituto de Ecología, A.C. Carretera antigua a Coatepec, 351, Col. El Haya, Xalapa, Ver. C.P. 91070, Tel. (228) 842-1835, http://myb.ojs.inecol.mx/, madera.bosques@inecol.mx. Editor responsable: Raymundo Dávalos Sotelo. Reserva de Derechos al Uso Exclusivo 04-2016-062312190600-203, ISSN electrónico 2448-7597, ambos otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este Número, Reyna Paula Zárate Morales, Carretera antigua a Coatepec, 351, Col. El Haya, Xalapa, Ver., C.P. 91070, fecha de última modificación, 12 de mayo de 2020.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación.

Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

 

Licencia Creative Commons

  Los aspectos éticos relacionados con la publicación de manuscritos en Madera y Bosques se apegan a los establecidos en el COPE.

  Gestionando el conocimiento