Vol. 26 Núm. 1 (2020): Primavera 2020
Artículos Científicos

Uso del modelo 3-PG para la predicción de biomasa de eucalipto en Jalisco, México

Aurelio Guevara-Escobar
Universidad Autónoma de Querétaro
Mónica Cervantes-Jiménez
Universidad Autónoma de Querétaro
Humberto Suzán-Azpiri
Universidad Autónoma de Querétaro

Publicado 2020-03-30

Palabras clave

  • carbon stock,
  • leaf area,
  • evaporation,
  • commercial plantations
  • almacén de carbono,
  • área foliar,
  • evaporación,
  • plantaciones comerciales


La modelación de la biomasa en plantaciones forestales es una alternativa para cuantificar el carbono almacenado en la vegetación. Las predicciones son importantes para las decisiones productivas o para los esfuerzos de mitigación de cambio climático. Un aspecto importante es la relación de la humedad de suelo (q) con la biomasa. Se usó el modelo 3-PG para determinar la producción de biomasa en distintos escenarios de q en una plantación de Eucalyptus globulus en un clima subtropical. De 2007 a 2009 se midió q en el perfil 0 m -1.8 m, índice de área foliar y diámetro a la altura del pecho. Se midió la precipitación y se estimaron la evapotranspiración de cultivo y potencial para un año con base en el balance hídrico, con valores de 959 mm, 514.3 mm y 1303 mm respectivamente. La biomasa modelada no fue afectada por q al inicio del año, pero sí por la q mínima del suelo. Los modelos para el índice de área foliar y la evapotranspiración sobreestimaron los datos observados. La biomasa a los ocho años se estimó en 165.5 Mg ha-1, de la cual, 23.1 Mg ha-1 se almacena en raíces y 59.5 Mg ha-1 en biomasa aérea. Concluyendo, los datos de la humedad mínima del suelo son necesarios para modelar el diámetro a la altura del pecho y es preferible el ensamble de modelos en comparación con escoger un solo modelo o usar el promedio de ellos.


  1. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Rome: FAO.
  2. Almeida, A. C., Landsberg, J. J., & Sands, P. J. (2004). Parameterisation of 3-PG model for fast-growing Eucalyptus grandis plantations. Forest Ecology and Management, 193(1–2), 179–195. doi: 10.1016/j.foreco.2004.01.029
  3. Almeida, A. C., Siggins, A., Batista, T. R., Beadle, C., Fonseca, S., & Loos, R. (2010). Mapping the effect of spatial and temporal variation in climate and soils on Eucalyptus plantation production with 3-PG, a process-based growth model. Forest Ecology and Management, 259(9), 1730–1740. doi: 10.1016/j.foreco.2009.10.008
  4. Almeida, A. C., Soares, J. V., Landsberg, J. J., & Rezende, G. D. (2007). Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. Forest Ecology and Management, 251(1–2), 10–21. doi: 10.1016/j.foreco.2007.06.009
  5. Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in ecology & evolution, 22(1), 42–47. doi: 10.1016/j.tree.2006.09.010
  6. Battaglia, M., Cherry, M., Beadle, C., Sands, P., & Hingston, A. (1998). Prediction of leaf area index in eucalypt plantations: Effects of water stress and temperature. Tree Physiology, 18(8–9), 521–528. doi: 10.1093/treephys/18.8-9.521
  7. Bauhus, J., Van Winden, A. P., & Nicotra, A. B. (2004). Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Canadian Journal of Forest Research, 34(3), 686–694. doi: 10.1139/x03-243
  8. Beauchamp, J. J., & Olson, J. S. (1973). Corrections for bias in regression estimates after logarithmic transformation. Ecology, 54(6), 1403–1407. doi: 10.2307/1934208
  9. Beaumont, L. J., Hughes, L., & Pitman, A. (2008). Why is the choice of future climate scenarios for species distribution modelling important? Ecology letters, 11(11), 1135–1146. doi: 10.1111/j.1461-0248.2008.01231.x
  10. Bennett, L., Weston, C., & Attiwill, P. (1997). Biomass, nutrient content and growth response to fertilisers of six-year-old Eucalyptus globulus plantations at three contrasting sites in Gippsland, Victoria. Australian Journal of Botany, 45(1), 103–121. doi: 10.1071/bt96057
  11. Brooker, M. I. H. (2000). A new classification of the genus Eucalyptus L’Her.(Myrtaceae). Australian Systematic Botany, 13(1), 79–148. doi: 10.1071/SB98008
  12. Bryars, C., Maier, C., Zhao, D., Kane, M., Borders, B., Will, R., & Teskey, R. (2013). Fixed physiological parameters in the 3-PG model produced accurate estimates of loblolly pine growth on sites in different geographic regions. Forest ecology and management, 289, 501–514. doi: 10.1016/j.foreco.2012.09.031
  13. Chan, F. C., Arain, M. A., Khomik, M., Brodeur, J. J., Peichl, M., Restrepo-Coupe, N., …, & Xu, B. (2018). Carbon, water and energy exchange dynamics of a young pine plantation forest during the initial fourteen years of growth. Forest Ecology and Management, 410, 12–26. doi: 10.1016/j.foreco.2017.12.024
  14. Clyde, M. (2003). Model averaging. En S. J. Press (ed.) Subjective and objective Bayesian statistics. John Wiley & Sons
  15. Crockford, R., & Richardson, D. (2000). Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate. Hydrological processes, 14(16‐17), 2903–2920. doi: 10.1002/1099-1085(200011/12)14:16/17<2903::aid-hyp126>3.0.co;2-6
  16. de Almeida, A. P., & Riekerk, H. (1990). Water balance of Eucalyptus globulus and Quercus suber forest stands in south Portugal. Forest ecology and management, 38(1–2), 55–64. doi: 10.1016/0378-1127(90)90085-P
  17. Dvorak, W. (2012). Water use in plantations of eucalypts and pines: A discussion paper from a tree breeding perspective. International Forestry Review, 14(1), 110–119. doi: 10.1505/146554812799973118
  18. Eamus, D., Burrows, W., & McGuinness, K. (2000). Review of allometric relationships for estimating woody biomass for Queensland, the Northern Territory and Western Australia. Australian Greenhouse Office.
  19. Entekhabi, D., Yueh, S., O’Neill, P. E., Kellogg, K. H., Allen, A., Bindlish, R., …, & Crow, W. T. (2014). SMAP Handbook–Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space.
  20. Esprey, L., Sands, P., & Smith, C. (2004). Understanding 3-PG using a sensitivity analysis. Forest Ecology and Management, 193(1–2), 235–250. doi: 10.1016/j.foreco.2004.01.032
  21. Food and Agriculture Organization [FAO] (1995). Plantations in tropical and subtropical regions -mixed and pure. (FAO of the United Nations, Ed.). Rome, Italy.
  22. Forrester, D. I., Bauhus, J., & Cowie, A. L. (2006). Carbon allocation in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Forest Ecology and Management, 233(2–3), 275–284. doi: 10.1016/j.foreco.2006.05.018
  23. Forrester, D. I., Bauhus, J., & Khanna, P. K. (2004). Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Synthesis of the physiological, environmental, genetic and silvicultural determinants of the growth and productivity of eucalypts in plantations., 193(1), 81–95. doi: 10.1016/j.foreco.2004.01.024
  24. Guevara-Escobar, A., Cervantes-Jiménez, M., Suzán-Azpiri, H., González-Sosa, E., & Saavedra, I. (2012). Producción de pasto Rhodes en una plantación de eucalipto. Agrociencia, 46(2), 175–188.
  25. Klesse, S., Babst, F., Lienert, S., Spahni, R., Joos, F., Bouriaud, O., …, & Frank, D. C. (2018). A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth Sensitivity to Interannual Climate Variability. Global Biogeochemical Cycles, 32(8), 1226–1240. doi: 10.1029/2017GB005856
  26. Kramer, P. J., & Boyer, J. S. (1995). Water Relations of Plants and Soils. Academic Press.
  27. Landsberg, J. & Waring, R. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest ecology and management, 95(3), 209–228.
  28. Luedeling, E., Smethurst, P. J., Baudron, F., Bayala, J., Huth, N. I., van Noordwijk, M., …, & Muthuri, C. (2016). Field-scale modeling of tree–crop interactions: Challenges and development needs. Agricultural Systems, 142, 51–69. doi: 10.1016/j.agsy.2015.11.005
  29. Macfarlane, C., Arndt, S. K., Livesley, S. J., Edgar, A. C., White, D. A., Adams, M. A., & Eamus, D. (2007). Estimation of leaf area index in eucalypt forest with vertical foliage, using cover and fullframe fisheye photography. Forest Ecology and Management, 242(2–3), 756–763. doi: 10.1016/j.foreco.2007.02.021
  30. Maier, C. A., Albaugh, T. J., Cook, R. I., Hall, K., McInnis, D., Johnsen, K. H., …, & Vose, J. M. (2017). Comparative water use in short-rotation Eucalyptus benthamii and Pinus taeda trees in the Southern United States. Forest ecology and management, 397, 126–138. doi: 10.1016/j.foreco.2017.04.038
  31. Maseda, P. H. & Fernández, R. J. (2016). Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances. Tree physiology, 36(2), 243–251. doi: 10.1093/treephys/tpv137
  32. Miehle, P., Battaglia, M., Sands, P. J., Forrester, D. I., Feikema, P. M., Livesley, S. J., …, & Arndt, S. K. (2009). A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecological Modelling, 220(5), 734–746. doi: 10.1016/j.ecolmodel.2008.12.010
  33. Moreaux, V., O’Grady, A. P., Nguyen-The, N., & Loustau, D. (2013). Water use of young maritime pine and Eucalyptus stands in response to climatic drying in south-western France. Plant Ecology & Diversity, 6(1), 57–71. doi: 10.1080/17550874.2012.668228
  34. Moreira de Oliveira, C. M., Coll Delgado, R., Gomes de Araújo, E. J., de Almeida, A. Q., Cristian Rosa, T., & de Oliveira Júnior, J. F. (2018). Modelo 3-PG na previsao do potencial productivo de áreas para platios comerciais de Eucalyptus spp. Ciência Florestal (01039954), 28(1). doi: 10.5902/1980509831580
  35. Návar, C. J. de J., González, N., & Graciano, J. (2005). Carbon stocks and fluxes in reforestated sites of Durango, Mexico. Madera y Bosques, 11(2), 15-34. doi: 10.21829/myb.2005.1121254
  36. Pearson, R. G. & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. doi: 10.1046/j.1466-822X.2003.00042.x
  37. Ruiz, R. M., Rivero, H. S. A., Alcalá, V. M. C., & Espinoza, M. G. (2006). Importancia de las plantaciones forestales de Eucalyptus. Ra Ximhai: revista científica de sociedad, cultura y desarrollo sostenible, 2(3), 815–846.
  38. Sands, P. (2004). Adaptation of 3-PG to novel species: Guidelines for data collection and parameter assignment. CRC Sustainable Production Forestry, Hobart, 34.
  39. Sands, P. & Landsberg, J. (2002). Parameterisation of 3-PG for plantation grown Eucalyptus globulus. Forest Ecology and Management, 163(1–3), 273–292. doi: 10.1016/S0378-1127(01)00586-2
  40. Senelwa, K. & Sims, R. E. (1999). Fuel characteristics of short rotation forest biomass. Biomass and Bioenergy, 17(2), 127–140. doi: 10.1016/S0961-9534(99)00035-5
  41. Seppänen, P. (2002). Secuestro de carbono a través de plantaciones de eucalipto en el trópico húmedo. Foresta veracruzana, 4(2).
  42. Silva, W. C. M. da, Ribeiro, A., Neves, J. C. L., Barros, N. F. de, & Leite, F. P. (2013). Water balance model and eucalyptus growth simulation in the rio doce basin, Brazil. Acta Scientiarum. Agronomy, 35(4), 403–412.
  43. Smith, K. T. (2015). Compartmentalization, resource allocation, and wood quality. Current Forestry Reports, 1(1), 8–15. doi: 10.1007/s40725-014-0002-4
  44. Stape, J. L., Binkley, D., & Ryan, M. G. (2004). Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. Forest Ecology and Management, 193(1–2), 17–31. doi: 10.1016/j.foreco.2004.01.020
  45. Valente, F., David, J., & Gash, J. (1997). Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology, 190(1–2), 141–162. doi: 10.1016/S0022-1694(96)03066-1
  46. Vega, R. A. & Baez, O. (2016). Ciencia y ambiente en la aclimatación del eucalipto en el Valle de México a través de la prensa, 1869-1880. Historia y sociedad, (30), 237–264.
  47. Vega-Nieva, D. J., Tomé, M., Tomé, J., Fontes, L., Soares, P., Ortiz, L., …, & Rodrígez-Soalleiro, R. (2013). Developing a general method for the estimation of the fertility rating parameter of the 3-PG model: application in Eucalyptus globulus plantations in northwestern Spain. Canadian journal of forest research, 43(7), 627–636.
  48. White, D. A., Battaglia, M., Ren, S., & Mendham, D. S. (2016). Water use and water productivity of eucalyptus plantations in South-East Asia. Australian Centre for International Agricultural Research (ACIAR).
  49. Whitehead, D. & Beadle, C. L. (2004). Physiological regulation of productivity and water use in Eucalyptus: a review. Forest Ecology and Management, 193(1–2), 113–140. doi: 10.1016/j.foreco.2004.01.026
  50. Wilkinson, G. R., Schofield, M., &Kanowski, P. (2014). Regulating forestry—Experience with compliance and enforcement over the 25 years of Tasmania’s forest practices system. Forest Policy and Economics, 40, 1–11. doi: 10.1016/j.forpol.2013.11.010
  51. Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International journal of forecasting, 14(1), 35–62. doi: 10.1016/S0169-2070(97)00044-7
  52. Zianis, D. & Mencuccini, M. (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187(2–3), 311–332. doi: 10.1016/j.foreco.2003.07.007