Vol. 23 Núm. 3 (2017): Otoño 2017
Artículos Científicos

Crecimiento y producción de una plantación subtropical de eucalipto en un suelo degradado del Noreste de México

Rahim Foroughbakhch Pournavab
Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Botánica.
Biografía
Artemio Carrillo Parra
Universidad Juárez del Estado de Durango. Instituto de Silvicultura e Industria de la Madera.
Biografía
Jorge Luis Hernández Piñero
Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Botánica.
Biografía
Marco Antonio Guzmán Lucio
Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Botánica.
Biografía

Publicado 2017-11-18

Palabras clave

  • exotic plants fuelwood production,
  • plant growth,
  • plant survival,
  • semiarid zones,
  • reforestation
  • plantas exóticas,
  • producción de madera,
  • crecimiento,
  • sobrevivencia,
  • zonas semiáridas,
  • reforestación
  • ...Más
    Menos

Resumen

En las últimas tres décadas, las especies leñosas potencialmente útiles para la reforestación, producción de leña, carbón y madera han sido sobreexplotadas en la costa del Golfo de México, lo cual ha dado lugar a una paulatina disminución de la población vegetal y la degradación progresiva del ambiente. En la presente investigación se evaluó el establecimiento, la adaptabilidad, el desarrollo y la producción de leña y carbón de un cultivo de cinco especies de eucalipto por un período de 20 años en parcelas dispuestas al azar en un terreno desmontado con suelo profundo, franco-arcilloso y ligeramente alcalino de la región semiárida del noreste de México. Eucalyptus camaldulensisE. tereticornis y E. microtheca mostraron la mayor tasa de crecimiento en altura promedio (1.07 m año-1, 0.93 m año-1 y 0.85 m año-1, respectivamente). E. camaldulensis mostró los valores de volumen más altos a los 20 años (58.55 m3 ha−1), seguido de E. tereticornis (54.15 m3 ha−1) y E. microtheca (51.91 m3 ha-1). E. sideroxylun E. crebra arrojaron los volúmenes arbóreos más bajos (35.12 m3 ha−1 y 30.45 m3ha−1, respectivamente). Los resultados obtenidos muestran que la adaptabilidad de las especies de eucalipto al clima de las regiones subtropicales permite su uso en combinación con la vegetación nativa en áreas degradadas ofreciendo servicios en productos maderables y no maderables a la población local. Además, la producción de árboles exóticos de gran diámetro y con pocas ramas laterales puede aumentar el volumen de la madera explotada, los ingresos del propietario de los terrenos y disminuir así la presión sobre las especies nativas.

Citas

  1. Andrade, C. M. S., García, R., Couto, L. and Pereira, O. G. (2001). Fatores limitantes ao crescimento do capim-tanzânia em um sistema agrossilvipastoril com eucalipto, na região dos Cerrados de Minas Gerais. Revista Brasileira de Zootecnia, 30, 78-85.
  2. Ares, A., St Louis, D., & Brauer, D. (2003). Trends in tree growth and understory yield in silvopastoral practices with southern pines. Agroforestry Systems, 59(1), 27-33. doi:10.1023/a:1026132918914
  3. Berni, C. A., Bolza, E. and Christensen, F. J. (1979). South American timbers: the characteristics, properties and uses of 190 species. Australia: Commonwealth Scientific and Industrial Research Organization (CSIRO), Division of Building Research.
  4. Botman, I. (2010). Production potential of eucalypt woodlots for bioenergy in the Winelands region of the Western Cape. (M.S. thesis). University of Stellenbosch, Stellenbosch, South Africa.
  5. Borough, C. J., Incoll, W. D., May, J. R. and Bird, T. (1984). Yield statistics. In Eucalyptus for wood production. Collingwood, Australia: CSIRO/Academic Press.
  6. Brown, S., Gillespie, A. J. R. and Lugo, A. E. (1991). Biomass of tropical forests of South and Southeast Asia. Canadian Journal of Forest Research, 21, 111-117. doi:10.1139/x91-015
  7. Bucur, V. (2006). Acoustics of wood (2nd ed.). Berlin, Germany: Springer Series in Wood Science.
  8. Burgess, I. P. (1987). Provenance trials of Eucalyptus grandis and E. saligna in Australia. Silvae Genetic, 37(5-6), 221-227.
  9. Burley, J. (1980). Selection of species for fuelwood plantations. The Commonwealth Forestry Review, 59(2), 133-147.
  10. Bustillos-Herrera, J. A., Valdez, J. R., Aldrete, A. and González, M. (2007). Aptitud de terrenos para plantaciones de eucalipto (Eucaliptus grandis hill ex maiden): definición mediante el proceso de análisis jerarquizado y SIG. Agrociencia, 41, 787-796.
  11. Caparrós, A, Cerdá, E., Ovando, P. and Campos, P. (2010). Carbon sequestration with reforestations and biodiversity-scenic values. Environmental and Resource Economics, 45, 49-72. doi:10.1007/s10640-009-9305-5
  12. Carstens, A. (1987). Struktur eines Matorrals in semiariden-subhumiden Nordosten Mexikos und Auswirkungen von Behandlungen zu seiner Bewirtschaftung. (Ph.D.thesis). Aus dem Inst. Fur Pflanzenbau und Tropen/Subtropen der George-August Universiát Gottingen, RF, Germany.
  13. Chen, S. (2005). Eucalyptus source of ecological problems and countermeasures. Tropical Forestry, 33(4), 29-30.
  14. Cromer, R. N. (1996). Silviculture of eucalypt plantations in Australia. In. P. M. Attiwill and M. A. Adams (Eds.), Nutrition of Eucalypts (pp. 259-274). Collingwood, Australia: CSIRO Publishing.
  15. Dávalos, R. and Bárcenas, G. (1999). Clasificación de las propiedades mecánicas de las maderas mexicanas en condición “seca”. Madera y Bosques, 5(1), 61-69. doi: 10.21829/myb.1999.511355
  16. Djogo, A. P. Y. (2001). Incorporating tree and shrub species in to small scale farming systems in the dry region in Indonesia. In D. Pasternak and A. Schlissel (Eds.), Combating desertification with plants (pp 437-448). Beer-Sheva, Israel: International Program for Arid Land Crops, Ben-Gurion University of the Negev.
  17. De Soyza, A. G., Whitford, W. G., Martínez-Meza, E. and Van Zee, J. W. (1997). Variation in creosotebush (Larrea tridentate) canopy morphology in relation to habitat, soil fertility and associated annual plant communities. The American Midland Naturalist Journal, 137, 13-26.
  18. Dube, F., Couto, L., Silva, M. L., Leite, H. G., Garcia, R. and Araujo, G. A. A. (2002). A simulation model for evaluating technical and economic aspects of an industrial Eucalyptus-based agroforestry system in Minas Gerais, Brazil. Agroforestry Systems, 55(1), 73-80. doi:10.1023/a:1020240107370
  19. Fabiao, A., Madeira, M., Steen, E., Katterer, T., Ribeiro, C., and Araujo, C. (1995). Development of root biomass in an Eucalyptus globulus plantation under different water and nutrient regimes. Plant and Soil, 168, 215-223. doi:10.1007/bf00029331
  20. Fearnside, P. M. (1990). The rate of extent of deforestation in Brazilian Amazonia. Environmental Conservation, 17(3), 213-226.
  21. Food and Agriculture Organization of United Nation [FAO]. (1974). Soil map of the world, vol. I. Paris, France: Unesco.
  22. Food and Agriculture Organization of United Nation [FAO]. (2003). Planted forest database: analysis of annual planting trends and silvicultural parameters for commonly planted species. In A. del Lungo (Ed.), Planted forests and trees working papers. Working paper 26. Rome, Italy: Forest Resources Development Service, Forest Resources Division.
  23. Food and Agriculture Organization of United Nation [FAO]. (2006). Global planted forests thematic study: results and analysis. In A., del Lungo, J. Bal, and J. Carle, (Eds.), Planted forests and trees working papers. Working paper 38. Rome, Italy: FAO.
  24. Foroughbakhch, R., Alvarado, M. A., Hernández, J. L., Rocha, A., Guzman M. A. and Treviño, E. J. (2006). Establishment, growth and biomass production of 10 tree woody species introduced for reforestation and ecological restoration in northeastern Mexico. Forest Ecology and Management, 235, 194-201. doi:10.1016/j.foreco.2006.08.012
  25. Foroughbakhch, R., Carrillo, A., Hernández, J. L., Alvarado, M. A., Rocha, A. and Cárdenas, M. L. (2012). Wood volume production and use of 10 woody species in semiarid zones of Northeastern Mexico. International Journal of Forestry Research, 2012, Article ID 529829.
  26. Foroughbakhch, R., Hernández-Piñero, J. L. and Carrillo-Parra, A. (2014). Adaptability, growth and firewood volume yield of multipurpose tree species in semiarid regions of Northeastern Mexico. International Journal of Agricultural Policy and Research, 2 (12), 444-453. doi: http://dx.doi.org/10.15739/IJAPR.016
  27. Forrester, D. I., Bauhus, J., Cowie, A. L and Vanclay, K. (2006). Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. Forest Ecology and Management, 233(2-3), 211-230. doi:10.1016/j.foreco.2006.05.012
  28. Gadgil, M. and Guha, R. (1993). This Fissured Land: An Ecological History of India. Delhi, India: Oxford University Press.
  29. García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (5th ed.). Mexico City, Mexico: Instituto de Geografía, Universidad Nacional Autónoma de México.
  30. Gareca, E. E., Martinez, Y. Y., Bustamante, R. O., Aguirre, L. F., and Siles, M. M. (2007). Regeneration patterns of Polylepis subtusalbida growing with the exotic trees Pinus radiata and Eucalyptus globules at Parque Nacional Tunari, Bolivia. Plant Ecology, 193(2), 253-263. doi:10.1007/s11258-007-9263-3
  31. Gobierno de los Estados Unidos Mexicanos. 2015. 3er Informe de Gobierno 2014-2015. Anexo Estadístico. Mexico City.
  32. Gonzalez, R., Treasure, T., Wright, J., Saloni, D., Phillips, R., Abt, R., and Jameel, H. (2011). Exploring the potential of Eucalyptus for energy production in the Southern United States: Financial analysis of delivered biomass. Part I. Biomass & Bioenergy, 35(2), 755-766. doi:10.1016/j.biombioe.2010.10.011
  33. Guevara-Escobar, A., Kemp, P. D., Mackay, A. D., and Hodgson, J. (2007). Pasture production and composition under poplar in a hill environment in New Zealand. Agroforestry Systems, 69(3), 199-213. doi:10.1007/s10457-007-9038-9
  34. Heiseke, D. and Foroughbakhch, R. (1985). El matorral como recurso forestal. Reporte Científico, 1, 1-33.
  35. Hinkelmann, K. and Kempthorne, O. (1994). Design and analysis of experiments. Introduction to Experimental Design, vol. 1. New York, United States: John Wiley and Sons.
  36. Jackson, J. and Ash, A.J. (1998). Tree-grass relationships in open eucalypt woodlands of northeastern Australia: influence of trees on pasture productivity, forage quality and species distribution. Agroforestry Systems, 40, 159-176.
  37. Jackson, J., and Ash, A. J. (1998). Tree-grass relationships in open eucalypt woodlands of northeastern Australia: influence of trees on pasture productivity, forage quality and species distribution. Agroforestry Systems, 40(2), 159-176. doi:10.1023/a:1006067110870
  38. Kleinig, D. and Doran, J. C. (1981). Eucalyptus propagation on a small scale. CSIRO, Division of Forest Res.
  39. Malan, F. S. (2005). The effect of planting density on the wood quality of South African-grown Eucalyptus grandis. Southern African Forestry Journal, 205, 31-37.
  40. Maydel Von, H. J. (1996). Appraisal of practices to manage woody plants in semiarid environment. In S. Bruns, J. Furberg, O. Luukanen and P. Woods (Eds.), Dryland Forestry Research (pp. 47-64). Stockholm, Sweden: International Foundation for Science.
  41. Meskimen, G. and Franklin, E. C. (1979). Spacing Eucalyptus grandis in southern Florida. Southern Journal of Applied Forestry, 1, 3-5.
  42. Mueller-Dombois, D. and Ellenberg, H. (1974). Aims and Methods of Vegetation Ecology. New York, United States: John Wiley & Sons.
  43. Návar, J., Mendez, E., Graciano, J., Dale, V. and Parresol, B. (2004). Biomass equations for shrub species of Tamaulipan thornscrub of northeastern Mexico. Journal of Arid Environments, 59, 657-674.
  44. Niembro-Rocas, A. (1990). Árboles y arbustos útiles de México. Limusa. Mexico.
  45. Panse, V. G. and Sukhatme, P. V. (1995). Statistical methods for agricultural research workers. New Delhi, India: Pupa Publishers
  46. Ramovs, B. V. and Roberts, M. R. (2003). Understory vegetation and environment responses to tillage, forest harvesting, and conifer plantation development. Ecological Applications, 13(6), 1682-1700. doi:10.1890/02-5237
  47. Rathert, G. and Werasopon, O. (1993). Growth of multipurpose tree species in Thailand. Nitrogen Fixing Tree Research Reports, 2, 53-56.
  48. Sasikumar, K., Vijayalakshmi, C. and Parthiban, K. T. (2001). Allelopathic effects of four Eucalyptus species on redgram (Cajanus cajan L.). Journal of Tropical Agriculture, 39,134-138.
  49. Semana, J. A., Bawagan, P. V., Sirimban, F. R. and Mendoza, V. B. (1977). A feasibility study of the utilization of man-made forests for generating electricity. Forest Products Research and Industries Development Commission. Laguna, Philippines: National Science Develop Board.
  50. Soares, P. and Tomé, M. (2001). A tree crown ratio prediction equation for eucalyptus plantations. Annals of Forest Science, 58, 193-202.
  51. Soares, P., and Tomé, M. (2002). Height-diameter equation for first rotation eucalypt plantations in Portugal. Forest Ecology and Management, 166(1-3), 99-109. doi:10.1016/s0378-1127(01)00674-0
  52. Swain, T. L. and Gardner, R. A. W. (2004). Cold tolerant eucalypts in South Africa- growth information for informed site-species matching in SA. Southern African Forestry Journal, 202, 83-84.
  53. Tewari, J. C., Harris, P. J. C., Harsh, L. N., Cadoret, K. and Pasiecznik, N. M. (2000). Managing Prosopis juliflora (Vilayati babul). A Technical Manual. Central Arid Zone Research Institute. India.
  54. Du-Toit, B., Smith, C. W., Little, K. M., Boreham, G., and Pallett, R. N. (2010). Intensive, site-specific silviculture: Manipulating resource availability at establishment for improved stand productivity. A review of South African research. Forest Ecology and Management, 259(9), 1836-1845. doi:10.1016/j.foreco.2009.07.015
  55. Underwood, A. J. (2004). Experiments in ecology: their logical design and interpretation using analysis of variance. England: Cambridge University Press.
  56. Vale, R. S., Couto, L., Silva, M. L., García, R., Almeida, J. C. C. and Lani, J. L. (2004). Analise da viabilidade economica de um sistema silvipastoril com eucalipto para a Zona da Mata de Minas Gerais. Agrossilvicultura, 1, 107-120.
  57. Wang, H. F., Lencinas, M. V., Friedman, C. R., Wang, X. K. and Qiu, J. X. (2011). Understory plant diversity assessment of Eucalyptus plantations over three vegetation types in Yunnan, China. New Forests, 42(1), 101-116. doi:10.1007/s11056-010-9240-x
  58. Zar, J. H. (2010). Biostatistical Analysis (5th edition). New Jersey, United States: Prentice-Hall Inc.
  59. Zhang, C. L. and Fu, S. L. (2009). Allelopathic effects of eucalyptus and the establishment of mixed stands of eucalyptus and native species. Forest Ecology and Management, 258(7), 1391-1396. doi:10.1016/j.foreco.2009.06.045
  60. Zobel, B., Van Wyk, G. and Stahl, P. (1987). Growing Exotic Forests. New York, United States: John Wiley and Sons.