Vol. 8 Núm. 1 (2002): Primavera 2002
Artículos Científicos

Ajuste y predicción de la distribución Weibull a las estructuras diamétricas de plantaciones de pino de Durango, México

David Maldonado Ayala
Universidad Autónoma de Nuevo León. Facultad de Ciencias Forestales
Biografía

Publicado 2016-09-02

Palabras clave

  • Moments,
  • parameter estimation,
  • testing hypothesis,
  • three parameters
  • Estimación de parámetros,
  • momentos,
  • prueba de hipótesis,
  • tres parámetros

Resumen

En este trabajo se ajustaron y predijeron los parámetros de la distribución Weibull con atributos del rodal. Se demostró mediante pruebas de hipótesis que las ecuaciones son eficientes para predecir las estructuras diamétricas de los rodales utilizados en el ajuste y de rodales seleccionados para pruebas de validación. Por esta razón se recomiendan las ecuaciones en la predicción de las estructuras diamétricas de las plantaciones presentes en el estado de Durango, México (Pinus durangensis, P. cooperi, P. engelmannii, P. Cooperi, y P. arizonica).

Citas

  1. Ayers G., D. y B. Jackson D. 1989. Simulation of purchase tract availability for timber harvesting annual planning. Forest Products Journal 39(5):59-63.
  2. Bailey R., L. y T. Dell R. 1973. Quantifying diameter distributions with the Weibull function. Forest Science 19(2):97-104.
  3. Clutter J., L.; J. Fortson C.; L. Pienaar V.; G. Brister H. y R. Bailey L. 1983. Timber Management: A Quantitative Approach. John Wiley & Sons. Nueva York. pp:3-29.
  4. Devore J., L. 1987. Probability and Statistics for Engineers and the Sciences. Brooks/Cole Publishing Company. California. 312 p.
  5. Evans J., W.; R. Johnson A. y D. Green W. 1989. Two and three parameter Weibull goodness of fit tests. Research Paper Forest Products Laboratory. USDA Forest Service. No. FPL-RP-493. 27 p.
  6. Gadow K., V. 1984. Fitting diameter distributions of even aged pine stands. Forstwissenschaftliches Centralblatt 103(6):360-374.
  7. Graciano, L.J. 2001. Técnicas de evaluación dasométrica y ecológica de los bosques de coníferas bajo manejo de la Sierra Madre Occidental del centro sur de Durango, México. Tesis de Maestría. Facultad de Ciencias Forestales. UANL. Linares, N.L. México.
  8. Gupta R.; K. Gebremedhin G. y M. Grigoriu D. 1992. Characterizing the strength of wood trust joints. Transactions of the ASAE 35(4):1285-1290.
  9. Haan C., T. 1986. Statistical methods in hydrology. Iowa State Press. 378 p.
  10. Hafley W., L. y H. Schreuder T. 1977. Statistical distributions for fitting diameter and height data in even aged stands. Canadian Journal of Forest Research 7(3):481-487.
  11. Hahn G., J. y S. Shapiro S. 1967. Statistical models in engineering. John Wiley & Sons. Nueva York. 418 p.
  12. Hokka H.; M. Piiroinen L. y T. Penttila. 1991. Estimation of basal area d.b.h. distribution using the Weibull function for drained pine and birch dominated peatland stands in north Finland. Folia Forestalia 781. 22 p.
  13. Jayaraman K. y P. Rugmini. 1988. Diameter distributions for even aged teak. Indian Journal of Forestry 11(2):145-147.
  14. Kilkki P.; M. Maltamo; R. Mykkanen y R. Paivinen. 1989. Use of the Weibull function in estimating the basal área d.b.h. distribution. Silva Fennica 23(4):311-318.
  15. Knowe S., A.; T. Harrington B. y R. Shula G. 1992. Incorporating the effects of interspecific competition and vegetation management treatments in diameter distribution models for Douglas-fir saplings. Canadian Journal of Forest Research 22(9): 1255-1262.
  16. Kou W., Z. 1982. A study of the distribution of diameter of wood stems. Journal of Nanjing Technological College of Forest Products 1:51-65.
  17. Laar A., V.; R. Mosandl y A. Van Laar. 1989. Diameter distributions in young oak stands. Allgemeine Forst und Jagdzeitung 160(9-10):189-194.
  18. Li F., R. 1987. Study on diameter distribution and models predicting yields for natural Dahurian larch stands. Journal of North East Forestry University 15(4):8-16.
  19. Liu X.; G. Wood R.; R. Woollons C. y A. White D. 1992. Stand table prediction with reverse Weibull and extreme value density functions: some theoretical considerations. Forest Ecology and Management 48(1-2):175 178.
  20. Návar, J.; S. Corral y V. Dale. 2002. Fitting, estimating, and regressing the Weibull distribution parameters for pine and oak trees in mixed, unevenaged stands of Durango, Mexico. Submitted to Canadian Journal of Forest Research.
  21. Návar, J. y J.C. Contreras. 2000. Ajuste de la distribución Weibull a las estructuras diamétricas de rodales irregulares de pino de Durango, México. Agrociencia 34:353-361.
  22. Návar, J. y S. Corral. 2000. Modeling the Weibull distribution parameters of uneven-aged pine and oak diameter structures of Durango, Mexico. International Conference on Forest Ecosystem Restoration. 10-12 April 2000. Viena, Austria.
  23. Newberry J., D.; J. Moore A.; L. Zhang J. y L. Zhang. 1993. Evaluation of simple quantile estimation functions for modelling forest diameter distribution in even-aged stands of interior Douglas-fir. Canadian Journal of Forest Research 23(11): 2376-2382.
  24. Pierce C., B. 1976. The Weibull distribution and the determination of its parameters for application to timber strength data. Building Research Establishment, No. CP26/76. Reino Unido. 20 p.
  25. Reynolds, M.R.; T.E. Burk y W. Huang. 1988. Goodness of fit tests and model selection procedures for diameter distribution models. Forest Science 34:373-399.
  26. Seth S., K.; K. Satyamurthi R. y G. Negi S. 1975. A comparative study of some distribution functions as applied to diameter at breast height in even aged stands. Indian Forester 101(1):20-27.
  27. Shiver B., D. 1998. Sample size and estimation methods for the Weibull distribution for unthinned slash pine plantation diameter distributions. Forest Science 34(3):809-814.
  28. Svalov S.N. 1984. Using the generalized Gamma distribution for modeling the structure of stands. Lesnoi Zhurnal 2:10-13.
  29. Tang Y. y R. Pearson G. 1992. Effect of juvenile wood and choice of parametric property distributions on reliability-based beam design. Wood and Fiber Science 24(2):216-224.
  30. Torres R., J.M.; M. Acosta M. y O.S. Magaña T. 1992. Métodos para estimar los parámetros de la función Weibull y su potencial para ser predichos a través de atributos del rodal. Agrociencia: Rec. Nat. Ren. 2(2):60-76.
  31. Ueno Y. e Y. Osawa. 1987. The applicability of the Weibull and the expanded Weibull distributions. Journal of the Japanese Forestry Society 69(1):24-28.
  32. Vanclay K., V. 1994. Modelling forest growth and yield: Applications to mixed tropical forests. CAB International. Wallingford, Oxon. Reino Unido. 312 p.
  33. Wenger K., F. 1984. Forestry Handbook. Second Edition. Society of American Foresters. John Wiley & Sons. Nueva York. 1335 p.
  34. Zarnoch S., J. y T. Dell R. 1985. An evaluation of percentile and maximumlikelihood estimators of eibull parameters. Forest Science 31(1):260-268.
  35. Zutter B., R.; R. Oderwald G.; R. Farrar M, Jr. y P. Murphy A. 1982. A program to estimate parameters of forms of the Weibull distribution using complete, censored and truncated data. Publication of School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University. No. FWS pp:382.