Vol. 22 Núm. 2 (2016): Verano
Artículos Científicos

Germination and seedling emergence of four endangered oak species

Yureli García-De La Cruz
Universidad Veracruzana. Centro de Investigaciones Tropicales. Xalapa, Veracruz, México.
Fabiola López-Barrera
Instituto de Ecología, A. C. Red de Ecología Funcional. Xalapa, Veracruz, México.
José María Ramos-Prado
Universidad Veracruzana. Centro de Ecoalfabetización y Diálogo de Saberes. Xalapa, Veracruz, México

Publicado 2016-09-19

Palabras clave

  • early seedling establishment,
  • light environment,
  • Quercus,
  • seed mass,
  • tropical montane cloud forest
  • establecimiento temprano de plántulas,
  • ambiente lumínico,
  • Quercus,
  • peso de semilla,
  • bosque de niebla

Cómo citar

García-De La Cruz, Y., López-Barrera, F., & Ramos-Prado, J. M. (2016). Germination and seedling emergence of four endangered oak species. Madera Y Bosques, 22(2), 77–87. https://doi.org/10.21829/myb.2016.2221326

Métrica

Resumen

Germination and emergence of the endangered cloud forest oak species Quercus germana, Q. insignis, Q. sartorii and Q. xalapensis were observed under different light conditions (sun vs. shade) in a secondary forest fragment (SFF) and in a greenhouse (GRE). Seed weight variability was evaluated for each species and its relationship to germination and emergence determined. After 60 days, a total of 62.17% of the acorns had germinated and 37.79% had emerged in both experiments. Germination was highest in Q. sartorii (71.83% ± 2.09%), followed by Q. germana (66.33% ± 2.06%), Q. insignis (60.83% ± 2.34%) and Q. xalapensis (53.50% ± 2.32%). In the GRE, Q. insignis germination was higher under sun (62.00% ± 4.73%) than shade (48.00% ± 5.12%), whereas its emergence was the lowest (37.66% ± 3.46%) compared to other species in both light environments. In the SFF, germination and emergence only differed among species; Q. xalapensis germination was lowest (47.00% ± 3.11%) and Q. sartorii emergence was highest (58.66% ± 3.35%), compared to the other species. Acorn weight did not influence germination or emergence in any species. The implications of this study are discussed, along with recommended propagation techniques for growing oaks for forest restoration in disturbed areas.

Germinación y emergencia de plántulas de cuatro especies de encino amenazadas

La germinación y emergencia de encinos amenazados del bosque de niebla, Quercus germana, Q. insignis, Q. sartorii y Q. xalapensis fue evaluada bajo diferentes condiciones lumínicas (sol vs. sombra) en un fragmento de bosque secundario (SFF) y un invernadero (GRE). Para cada una de las especies, la variabilidad del peso de la semilla fue relacionada con la germinación y emergencia. Después de 60 días, en ambos experimentos, un total de 62.17% de las bellotas germinaron y 37.79% emergieron. La germinación fue mayor en Q. sartorii (71.83% ± 2.09%), seguido de Q. germana (66.33% ± 2.06%), Q. insignis (60.83% ± 2.34%) y Q. xalapensis (53.50% ± 2.32%). En el GRE, la germinación de Q. insignis fue mayor bajo el sol (62.00% ± 4.73%) que bajo la sombra (48.00% ± 5.12%), mientras que su emergencia fue la más baja (37.66% ± 3.46%) comparada con otras especies en ambos ambientes lumínicos. En el SFF, la germinación y emergencia solo fueron diferentes entre especies; Q. xalapensis registró la germinación más baja (47.00% ± 3.11%) y Q. sartorii la emergencia más alta (58.66% ± 3.35%) comparada con el resto de las especies. El peso de la bellota no influyó en la germinación y emergencia de las especies. Se discuten las implicaciones de este estudio, así como recomendaciones sobre técnicas de propagación para la producción de encinos para restaurar bosques en áreas perturbadas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Ashton, M. S., & Larson, B. C. (1996). Germination and seedling growth of Quercus (section Erythrobalanus) across openings in a mixed-deciduous forest of southern New England, USA. Forest Ecology and Management, 80, 81-94. DOI: https://doi.org/10.1016/0378-1127(95)03636-9
  2. Avendaño-Yáñez, M. L., Sánchez-Velásquez, L. R., Meave, J. A., & Pineda-López, M. R. (2014). Is facilitation a promising strategy for cloud forest restoration?. Forest Ecology and Management, 329, 328-333. DOI: https://doi.org/10.1016/j.foreco.2014.01.051
  3. Barradas, V. L., Cervantes-Pérez, J., Ramos-Palacios, R., Puchet-Anyul, C., Vázquez-Rodriguez, P., & Granados-Ramírez, R. (2010). Meso-scale climate change in the central mountain region of Veracruz State, Mexico. En L. A. Bruijnzeel, F. N. Scatena & L. S. Hamilton (Eds.), Tropical montane cloud forests (pp. 549-556). United Kingdom: Cambrigde University Press. DOI: https://doi.org/10.1017/CBO9780511778384.058
  4. Bonfil, C. (1998). The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in Quercus rugosa and Q. laurina (Fagaceae). American Journal of Botany, 85 (1), 79-87. DOI: https://doi.org/10.2307/2446557
  5. Branco, M., Branco, C., Merouani, H., & Almeida, M. H. (2001). Germination success, survival and seedling vigour of Quercus suber acorns in relation to insect damage. Forest Ecology and Management, 5716, 1-6. DOI: https://doi.org/10.1016/S0378-1127(01)00669-7
  6. Bubb, P., May, I., Miles, L., & Sayer, J. (2004). Cloud forest agenda. Cambridge, United Kingdom: UNEP-WCMC.
  7. Camacho-Cruz, A., González-Espinosa, M., Wolf, J. H. D., & De Jong, B. H. J. (2000). Germination and survival of tree species in disturbed forests of the highlands of Chiapas, Mexico. Canadian Journal of Botany, 78 (10), 1309-1318. DOI: https://doi.org/10.1139/b00-103
  8. Fan, W., Guo, H., Wang, X., & Duan, R. (2014). The effects of microhabitat, plant litter, and seed burial on the regeneration of Quercus wutaishanica and Pinus tabulaeformis. Scandinavian Journal of Forest Research, 29 (2), 183-192. doi: 10.1080/02827581.2014.885563. DOI: https://doi.org/10.1080/02827581.2014.885563
  9. Flores-Cano, J., Badano, E. I., & Flores, J. (2012). Effects of burial depth on seed germination and seedling emergence of Mexican oaks: a glasshouse experiment. Archives of Biological Science Belgrade, 64 (4), 1543-1554. DOI: https://doi.org/10.2298/ABS1204543C
  10. Fox, J. F. (1982). Adaptation of gray squirrel behavior to autumn germination by white oak acorns. Evolution, 36 (4), 800-809. DOI: https://doi.org/10.1111/j.1558-5646.1982.tb05446.x
  11. García, M. E. (1973). Modificaciones al sistema de clasificación climática de Köppen. México: Universidad Nacional Autónoma de México.
  12. Gómez, J. M. (2004). Importance of microhabitat and acorn burial on Quercus ilex early
  13. recruitment: non-additive effects on multiple demographic processes. Plant Ecology, 172, 287-297. DOI: https://doi.org/10.1023/B:VEGE.0000026327.60991.f9
  14. Gómez-Aparicio, L., Pérez-Ramos, I. M., Mendoza, I., Matías, L., Quero, L., Castro, J. Zamora, R., & Marañón, T. (2008). Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos, 117, 1683-1699. DOI: https://doi.org/10.1111/j.1600-0706.2008.16814.x
  15. González-Espinosa, M., Meave, J. A., Lorea-Hernández, F. G., Ibarra-Manríquez, G., & Newton, A. C. (2011). The red list of mexican cloud forest trees. Cambridge. United Kingdom: Fauna and Flora International, BGCI Plants for the Planet, Global Trees Campaign, IUCN and SSC Species Survival Commission.
  16. González-Rodríguez, V., Barrio, I. S., & Villar, R. (2012). Within-population variability influences early seedling establishment in four Mediterranean oaks. Acta Oecologica, 41, 82-89. DOI: https://doi.org/10.1016/j.actao.2012.04.008
  17. Gribko, L. S., & Jones, W. E. (1995). Test of float method of assessing northern red oak acorn condition. Tree Planter’s Notes, 46, 143-147.
  18. Hamilton, L. S., Juvik, J. O., & Scatena, F. N. (Eds.). (1995). Tropical montane cloud forests. New York: Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-2500-3
  19. Kappelle, M. (2006). Neotropical montane oak forests: overview and outlook. In M. Kapelle (Ed.), Ecology and conservation of neotropical montane oak forests (pp. 449-467). Berlin Heidelberg: Springer. DOI: https://doi.org/10.1007/3-540-28909-7_34
  20. Khan, M. L., & Shankar, U. (2001). Effect of seed weight, light regime and substratum microsite on germination and seedling growth of Quercus semiserrata Roxb. Tropical Ecology, 42 (1), 117-125.
  21. Koenig, W. D., Knops, J. M. H., Dickinson, J. L., & Zuckerberg, B. (2009). Latitudinal decrease in acorn size in bur oak (Quercus macrocarpa) is due to environmental constraints, not avian dispersal. Botany, 87, 349-356. DOI: https://doi.org/10.1139/B09-008
  22. Leiva, M. J., & Fernández-Alés, R. (2005). Holm-oak (Quercus ilex subsp. Ballota) acorns infestation by insects in Mediterranean dehesas and shrublands: its effect on acorn germination and seedling emergence. Forest Ecology and Management, 212 (1-3), 221-229. DOI: https://doi.org/10.1016/j.foreco.2005.03.036
  23. Li, Q., & Ma, K. (2003). Factors affecting establishment of Quercus liaotungensis Koidz. under mature mixed oak forest overstory and in shrubland. Forest Ecology and Management, 176, 133-146. DOI: https://doi.org/10.1016/S0378-1127(02)00274-8
  24. López-Barrera, F., & González-Espinosa, M. (2001). Influence of litter on emergence and early growth of Quercus rugosa: a laboratory study. New Forests, 21, 59-70. DOI: https://doi.org/10.1023/A:1010623403834
  25. López-Barrera, F., Manson, R. H., González-Espinosa, M., & Newton, A. (2006). Effects of the type of montane forest edge on oak seedling establishment along forest–edge–exterior gradients. Forest Ecology and Management, 225, 234-244. DOI: https://doi.org/10.1016/j.foreco.2005.12.055
  26. Montes-Hernández, B., & López-Barrera, F. (2013). Seedling establishment of Quercus insignis: A critically endangered oak tree species in southern Mexico. Forest Ecology and Management, 310, 927-934. DOI: https://doi.org/10.1016/j.foreco.2013.09.044
  27. Negi, A. S., Negi, G. C. S., & Singh, S. P. (1996). Establishment and growth of Quercus floribunda seedlings after a mast year. Journal of Vegetation Science, 7, 559-564. DOI: https://doi.org/10.2307/3236305
  28. Ortega-Pieck, A., López-Barrera, F., Ramírez-Marcial, N., & García-Franco, J. (2011). Early seedling establishment of two tropical montane cloud forest tree species: The role of native and exotic grasses. Forest Ecology and Management, 261, 1336-1343. DOI: https://doi.org/10.1016/j.foreco.2011.01.013
  29. Pérez-Ramos, I. M., Gómez-Aparicio, L., Villar, R., García, L. V., & Marañon, T. (2010). Seedling growth and morphology of three oak species along field resource gradients and seed mass variation: a seedling age-dependent response. Journal of Vegetation Science, 21, 419–437. DOI: https://doi.org/10.1111/j.1654-1103.2009.01165.x
  30. Puerta-Piñero, C., Gómez, J. M., & Valladares, F. (2007). Irradiance and oak seedling survival and growth in a heterogeneous environment. Forest Ecology and Management, 242, 462-469. DOI: https://doi.org/10.1016/j.foreco.2007.01.079
  31. Purohit, V. K., Tamta, S., Nandi, S. K., Rikhari, H. C., & Palni, L. M. S. (2003). Does acorn weight influence germination and subsequent seedlings growth of central Himalayan oaks?. Journal of Tropical Forest Science, 15 (3), 483-492.
  32. Quero, J. L., Villar, R., Marañón, T., Zamora, R., & Poorter, L. N. (2007). Seed mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments. American Journal of Botany, 94 (11), 1795–1803. DOI: https://doi.org/10.3732/ajb.94.11.1795
  33. Quintana-Ascencio, P. F., González-Espinosa, M., & Ramírez-Marcial, N. (1992). Acorn removal, seedling survivorship, and seedling growth of Quercus crispipilis in successional forests of the highlands of Chiapas, Mexico. Bulletin of the Torrey Botanical Club, 119 (1), 6-18. DOI: https://doi.org/10.2307/2996914
  34. Ramírez-Marcial, N., Camacho-Cruz, A., González-Espinosa, M., & López-Barrera, F. (2006). Establishment, survival and growth of tree seedlings under successional montane oak forests in Chiapas, Mexico. In M. Kapelle (Ed.), Ecology and conservation of Neotropical Montane oak forests, ecological studies, Volume 185 (pp. 177-189). Germany: Springer-Verlag. DOI: https://doi.org/10.1007/3-540-28909-7_14
  35. Scatena, F. N., Bruijnzeel, L. A., Bubb, P., & Das, S. (2010). Setting the stage. In L. A. Bruijnzeel, F. N. Scatena & L. S. Hamilton (Eds.), Tropical montane cloud forests (pp. 3-13). United Kingdom: Cambrigde University Press. DOI: https://doi.org/10.1017/CBO9780511778384.003
  36. Seiwa, K. (2000). Effects of seed size and emergence time on tree seedling establishment: importance of developmental constraints. Oecologia, 123 (2), 208-215. DOI: https://doi.org/10.1007/s004420051007
  37. Smallwood, P. D., Steele, M. A., & Faeth, S. H. (2001). The ultimate basis of the caching preferences of rodents, and the oak-dispersal syndrome: tannins, insects, and seed germination. American Zoologist, 41, 840-851. DOI: https://doi.org/10.1093/icb/41.4.840
  38. Tilki, F., & Alptekin, C.U. (2005). Variation in acorn characteristics in three provenances of Quercus aucheri Jaub. et Spach and provenance, temperature and storage effects on acorn germination. Seed Science and Technology, 33, 441-447. DOI: https://doi.org/10.15258/sst.2005.33.2.16
  39. Toledo-Aceves, T., Meave, J. A., González-Espinosa, M., & Ramírez-Marcial, N. (2011). Tropical montane cloud forest: current threats and opportunities for their conservation and sustainable management in Mexico. Journal of Environmental Management, 92, 974-981. DOI: https://doi.org/10.1016/j.jenvman.2010.11.007
  40. Tripathi, R. S., & Khan, M. L. (1990). Effects of seed weight and microsite characteristics on germination and seedling fitness in two species of Quercus in a subtropical wet hill forest. Oikos, 57, 289-296. DOI: https://doi.org/10.2307/3565956
  41. Valencia, S. (2004). Diversidad del género Quercus (Fagaceae) en México. Boletín de la Sociedad Botánica de México, 75, 33-53. DOI: https://doi.org/10.17129/botsci.1692
  42. Valencia, S., & Gual-Díaz, M. (2014). La familia Fagaceae en el bosque mesófilo de montaña de México. Botanical Sciences, 92, 193-204. DOI: https://doi.org/10.17129/botsci.45
  43. Weckerly, F. W., Sugg, D. W., & Semlitsh, R. D. (1989). Germination success of acorns (Quercus): insect predation and tannins. Canadian Journal of Forest Research, 19, 811-815. DOI: https://doi.org/10.1139/x89-124
  44. Xiao, Z., Harris, M. K., & Zhang, Z. 2007. Acorn defenses to herbivory from insects: Implications for the joint evolution of resistance, tolerance and escape. Forest Ecology and Management 238:302–308. DOI: https://doi.org/10.1016/j.foreco.2006.10.024
  45. Yamazaki, M., S. Iwamoto & Seiwa, K. (2009). Distance and density dependent seedling mortality caused by several diseases in eight tree species co-occurring in a temperate forest. In A. Van der Valk (Ed.), Forest Ecology, Volume 201 (pp. 181-196). Germany: Springer. DOI: https://doi.org/10.1007/s11258-008-9531-x
  46. Yi, X. F., & Yang, Y. Q. (2010). Large acorns benefit seedling recruitment by satiating weevil larvae in Quercus aliena. Plant Ecology, 209, 291-300. DOI: https://doi.org/10.1007/s11258-010-9730-0
  47. Yi, X. F., & Zhang, Z. B. (2008). Influence of insect-infested cotyledons on early seedling growth of Mongolian oak, Quercus mongolica. Photosynthetica, 46, 139-142. DOI: https://doi.org/10.1007/s11099-008-0022-z
  48. Yi, X., Wang, Z., Liu, C., Guoqiang, L., & Zhang, M. (2014). Acorn cotyledons are larger than their seedlings’ need: evidence from artificial cutting experiments. Nature Scientific Reports, 5, 1-6. DOI: https://doi.org/10.1038/srep08112
  49. Yu, X., Zhou, H., & Luo, T. (2003). Spatial and temporal variations in insect-infested acorn fall in a Quercus liaotungensis forest in North China. Ecological Research, 18, 155-164. DOI: https://doi.org/10.1046/j.1440-1703.2003.00543.x