Lignina: composición, síntesis y evolución
DOI:
https://doi.org/10.21829/myb.2021.2722137Palabras clave:
lignina, convergencia evolutiva, siringilo, guayacilo, diversificaciónResumen
La lignina es una de las principales estructuras de la pared celular de las plantas y varía en su composición entre los grupos taxonómicos. El objetivo de este estudio fue revisar la estructura de la lignina, el proceso de lignificación y las propuestas de patrones de evolución de esta. Para esto se revisó la literatura existente, cada punto se analizó y explicó para finalmente proponer una hipótesis evolutiva del proceso de lignificación en angiospermas. La lignina está compuesta por diversos monómeros y polímeros, su biosíntesis ocurre en plastidios y retículo endoplasmático, para posteriormente polimerizarse mediante diferentes grupos enzimáticos en la pared celular, donde ocurre el proceso de lignificación cooperativa. Durante la evolución de las plantas se desarrollaron los sistemas genéticos y enzimáticos para la biosíntesis de la lignina. Los dos principales tipos de lignina que se acumulan en los elementos traqueales de las plantas son lignina de tipo guayacilo y lignina de tipo siringilo/guayacilo. La presencia de siringilo en especies de Isoetes, Selaginella, Lycophyta y algas por convergencia evolutiva confirió resistencia a patógenos y rayos UV. La presencia de enzimas promiscuas catalíticamente funcionales propició la aparición de lignina, suberina y cutina, además de que la diversificación anatómica y química de la pared celular en angiospermas favorecieron su distribución en diferentes condiciones ambientales.
Descargas
Citas
Alejandro, S., Lee, Y., Tohge, T., Sudre, D., Osorio, S., Park, J., … Martinoia, E. (2012). AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Current Biology, 22(13), 1207–1212. https://doi.org/10.1016/j.cub.2012.04.064 DOI: https://doi.org/10.1016/j.cub.2012.04.064
Amthor, J. S. (2003). Efficiency of lignin biosynthesis: a quantitative analysis. Annals of Botany, 91(6), 673–695. https://doi.org/10.1093/aob/mcg073 DOI: https://doi.org/10.1093/aob/mcg073
Aoyama, W., Sasaki, S., Matsumura, S., Mitsunaga, T., Hirai, H., Tsutsumi, Y., & Nishida, T. (2002). Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol. Journal of Wood Science, 48(6), 497–504. https://doi.org/10.1007/BF00766646 DOI: https://doi.org/10.1007/BF00766646
Armbruster, W. S., Lee, J., & Baldwin, B. G. (2009). Macroevolutionary patterns of defense and pollination in Dalechampia vines: Adaptation, exaptation, and evolutionary novelty. Proceedings of the National Academy of Sciences of the United States of America, 106(43), 18085–18090. https://doi.org/10.1073/pnas.0907051106 DOI: https://doi.org/10.1073/pnas.0907051106
Augusto, L., Davies, T. J., Delzon, S., & de Schrijver, A. (2014). The enigma of the rise of angiosperms: Can we unite the knot? Ecology Letters, 17(10), 1326–1338. https://doi.org/10.1111/ele.12323 DOI: https://doi.org/10.1111/ele.12323
Bakalovic, N., Passardi, F., Ioannidis, V., Cosio, C., Penel, C., Falquet, L., & Dunand, C. (2006). PeroxiBase: A class III plant peroxidase database. Phytochemistry, 67(6), 534–539. https://doi.org/10.1016/j.phytochem.2005.12.020 DOI: https://doi.org/10.1016/j.phytochem.2005.12.020
Barros, J., Serk, H., Granlund, I., & Pesquet, E. (2015). The cell biology of lignification in higher plants. Annals of Botany, 115(7), 1053–1074. https://doi.org/10.1093/aob/mcv046 DOI: https://doi.org/10.1093/aob/mcv046
Barros, J., Serrani-Yarce, J. C., Chen, F., Baxter, D., Venables, B. J., & Dixon, R. A. (2016). Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nature Plants, 2(6), 16050. https://doi.org/10.1038/NPLANTS.2016.50 DOI: https://doi.org/10.1038/nplants.2016.50
Berthet, S., Demont-Caulet, N., Pollet, B., Bidzinski, P., Cézard, L., le Bris, P., … Jouanin, L. (2011). Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 23(3), 1124–1137. https://doi.org/10.1105/tpc.110.082792 DOI: https://doi.org/10.1105/tpc.110.082792
Bollhöner, B., Prestele, J., & Tuominen, H. (2012). Xylem cell death: Emerging understanding of regulation and function. Journal of Experimental Botany, 63(3), 1081–1094. https://doi.org/10.1093/jxb/err438 DOI: https://doi.org/10.1093/jxb/err438
Boyce, C., Kevin, C., Cody, G. D., Fogel, M. L., Hazen, R. M., Alexander, M. O., … Alexander, D. (2003). Chemical evidence for cell wall lignification and the evolution of tracheids in early Devonian plants. International Journal of Plant Sciences, 164(5), 691–702. https://doi.org/10.1086/377113 DOI: https://doi.org/10.1086/377113
Campbell, M. M., & Sederoff, R. R. (1996). Variation in lignin content and composition: Mechanisms of control and implications for the genetic improvement of plants. Plant Physiology, 110(1), 3–13. https://doi.org/10.1104/pp.110.1.3 DOI: https://doi.org/10.1104/pp.110.1.3
Carlquist, S. (1992). Pit membrane remnants in perforation plates of primitive dicotyledons and their significance. American Journal of Botany, 79(6), 660. https://doi.org/10.2307/2444882 DOI: https://doi.org/10.1002/j.1537-2197.1992.tb14608.x
Carnachan, S. M., & Harris, P. J. (2000). Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochemical Systematics and Ecology, 28(9), 865–879. https://doi.org/10.1016/S0305-1978(00)00009-0 DOI: https://doi.org/10.1016/S0305-1978(00)00009-0
Chen, F., Tobimatsu, Y., Jackson, L., Nakashima, J., Ralph, J., & Dixon, R. A. (2013). Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity. The Plant Journal: For Cell and Molecular Biology, 73(2), 201–211. https://doi.org/10.1111/tpj.12012 DOI: https://doi.org/10.1111/tpj.12012
Christensen, J. H., Overney, S., Rohde, A., Ardiles Diaz, W., Bauw, G., Simon, P., … Boerjan, W. (2001). The syringaldazine-oxidizing peroxidase PXP 3-4 from poplar xylem: cDNA isolation, characterization and expression. Plant Molecular Biology, 47(5), 581–593. https://doi.org/10.1023/A:1012271729285 DOI: https://doi.org/10.1023/A:1012271729285
De Micco, V., & Aronne, G. (2007). Anatomical features, monomer lignin composition and accumulation of phenolics in 1-year-old branches of the Mediterranean Cistus ladanifer L. Botanical Journal of the Linnean Society, 155(3), 361–371. https://doi.org/10.1111/j.1095-8339.2007.00705.x DOI: https://doi.org/10.1111/j.1095-8339.2007.00705.x
De Souza, R. E., Gomes, F. J. B., Brito, E. O., Costa-Lelis, R. C., Ribas-Batalha, L. A., Almeida-Santos, F., & Longue-Junior, D. (2020). A review on lignin sources and uses. Journal of Applied Biotechnology and Bioenergy, 7, 100–105. https://doi.org/10.15406/jabb.2020.07.00222 DOI: https://doi.org/10.15406/jabb.2020.07.00222
Dixon, R. A., Achnine, L., Kota, P., Liu, C.-J., Reddy, M. S. S., & Wang, L. (2002). The phenylpropanoid pathway and plant defence-a genomics perspective. Molecular Plant Pathology, 3(5), 371–390. https://doi.org/10.1046/j.1364-3703.2002.00131.x DOI: https://doi.org/10.1046/j.1364-3703.2002.00131.x
Do, C.-T., Pollet, B., Thévenin, J., Sibout, R., Denoue, D., Barrière, Y., … Jouanin, L. (2007). Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta, 226(5), 1117–1129. https://doi.org/10.1007/s00425-007-0558-3 DOI: https://doi.org/10.1007/s00425-007-0558-3
Donaldson, L. A. (2001). Lignification and lignin topochemistry - An ultrastructural view. Phytochemistry, 57(6), 859–873. https://doi.org/10.1016/S0031-9422(01)00049-8 DOI: https://doi.org/10.1016/S0031-9422(01)00049-8
Duroux, L., & Welinder, K. G. (2003). The peroxidase gene family in plants: a phylogenetic overview. Journal of Molecular Evolution, 57(4), 397–407. https://doi.org/10.1007/s00239-003-2489-3 DOI: https://doi.org/10.1007/s00239-003-2489-3
Edwards, D. (2003). Xylem in early tracheophytes. Plant, Cell and Environment, 26(1), 57–72. https://doi.org/10.1046/j.1365-3040.2003.00878.x DOI: https://doi.org/10.1046/j.1365-3040.2003.00878.x
Ekpo, I., Ogali, R., Ofodile, S., & Achugasim, O. (2016). Comparison of biomass content for the evaluation of cellulosic ethanol fuel production from predominant perennial grasses in south-south, Nigeria. International Journal of Applied Science and Technology, 6(2), 38–46.
Espiñeira, J. M., Novo Uzal, E., Gómez Ros, L. V, Carrión, J. S., Merino, F., Ros Barceló, A., & Pomar, F. (2011). Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biology (Stuttgart, Germany), 13(1), 59–68. https://doi.org/10.1111/j.1438-8677.2010.00345.x DOI: https://doi.org/10.1111/j.1438-8677.2010.00345.x
Fagerstedt, K. V, Kukkola, E. M., Koistinen, V. V. T., Takahashi, J., & Marjamaa, K. (2010). Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. Journal of Integrative Plant Biology, 52(2), 186–194. https://doi.org/10.1111/j.1744-7909.2010.00928.x DOI: https://doi.org/10.1111/j.1744-7909.2010.00928.x
Feild, T. S., Zweiniecki, M. A., Brodribb, T., Jaffre, T., Donoghue, M. J., & Holbrook, N. M. (2000). Structure and function of tracheary elements in Amborella trichopoda. International Journal of Plant Sciences, 161(5), 705–712. https://doi.org/10.1086/314293 DOI: https://doi.org/10.1086/314293
Feild, T.S., & Wilsony, J. P. (2012). Evolutionary voyage of angiosperm vessel structure-function and its significance for early angiosperm success. International Journal of Plant Sciences, 173(6), 596–609. https://doi.org/10.1086/666099 DOI: https://doi.org/10.1086/666099
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry : PPB, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016 DOI: https://doi.org/10.1016/j.plaphy.2010.08.016
Gómez Ros, L. V, Gabaldón, C., Pomar, F., Merino, F., Pedreño, M. A., & Barceló, A. R. (2007). Structural motifs of syringyl peroxidases predate not only the gymnosperm-angiosperm divergence but also the radiation of tracheophytes. The New Phytologist, 173(1), 63–78. https://doi.org/10.1111/j.1469-8137.2006.01898.x DOI: https://doi.org/10.1111/j.1469-8137.2006.01898.x
Gorzsás, A., Stenlund, H., Persson, P., Trygg, J., & Sundberg, B. (2011). Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. The Plant Journal: For Cell and Molecular Biology, 66(5), 903–914. https://doi.org/10.1111/j.1365-313X.2011.04542.x DOI: https://doi.org/10.1111/j.1365-313X.2011.04542.x
Grabber, J. H. (2005). How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Science, 45, 820–831. https://doi.org/10.2135/cropsci2004.0191 DOI: https://doi.org/10.2135/cropsci2004.0191
Grabber, J. H., Ralph, J., & Hatfield, R. D. (2002). Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses. Journal of Agricultural and Food Chemistry, 50(21), 6008–6016. https://doi.org/10.1021/jf0205312 DOI: https://doi.org/10.1021/jf0205312
Herbette, S., Bouchet, B., Brunel, N., Bonnin, E., Cochard, H., & Guillon, F. (2015). Immunolabelling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in Populus tremula × alba. Annals of Botany, 115(2), 187–199. https://doi.org/10.1093/aob/mcu232 DOI: https://doi.org/10.1093/aob/mcu232
Hilgers, R., Vincken, J.-P., Gruppen, H., & Kabel, M. A. (2018). Laccase/mediator systems: their reactivity toward phenolic lignin structures. ACS Sustainable Chemistry & Engineering, 6(2), 2037–2046. https://doi.org/10.1021/acssuschemeng.7b03451 DOI: https://doi.org/10.1021/acssuschemeng.7b03451
Iiyama, K., Lam, T. B.-T., & Stone, B. A. (1994). Covalent cross-links in the cell wall. Plant Physiology, 104(2), 315–320. https://doi.org/10.1104/pp.104.2.315 DOI: https://doi.org/10.1104/pp.104.2.315
Jin, Z., Shao, S., Katsumata, K. S., & Iiyama, K. (2007). Lignin characteristics of peculiar vascular plants. Journal of Wood Science, 53(6), 520–523. https://doi.org/10.1007/s10086-007-0891-y DOI: https://doi.org/10.1007/s10086-007-0891-y
Kang, X., Kirui, A., Dickwella Widanage, M. C., Mentink-Vigier, F., Cosgrove, D. J., & Wang, T. (2019). Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature Communications, 10(1), 347. https://doi.org/10.1038/s41467-018-08252-0 DOI: https://doi.org/10.1038/s41467-018-08252-0
Klap, V. A., Hemminga, M. A., & Boon, J. J. (2000). Retention of lignin in seagrasses: Angiosperms that returned to the sea. Marine Ecology Progress Series, 194, 1–11. https://doi.org/10.3354/meps194001 DOI: https://doi.org/10.3354/meps194001
Kohonen, M. M., & Helland, Å. (2009). On the function of wall sculpturing in xylem conduits. Journal of Bionic Engineering, 6(4), 324–329. https://doi.org/10.1016/S1672-6529(08)60131-6 DOI: https://doi.org/10.1016/S1672-6529(08)60131-6
Koutaniemi, S., Malmberg, H. A., Simola, L. K., Teeri, T. H., & Kärkönen, A. (2015). Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture. Journal of Integrative Plant Biology, 57(4), 341–348. https://doi.org/10.1111/jipb.12333 DOI: https://doi.org/10.1111/jipb.12333
Kozela, C., & Regan, S. (2003). How plants make tubes. Trends in Plant Science, 8(4), 159–164. https://doi.org/10.1016/S1360-1385(03)00050-5 DOI: https://doi.org/10.1016/S1360-1385(03)00050-5
Lacayo, C. I., Hwang, M. S., Ding, S. Y., & Thelen, M. P. (2013). Lignin depletion enhances the digestibility of cellulose in cultured xylem cells. PLoS ONE, 8(7), e68266. https://doi.org/10.1371/journal.pone.0068266 DOI: https://doi.org/10.1371/journal.pone.0068266
Lee, Y., Rubio, M. C., Alassimone, J., & Geldner, N. (2013). A mechanism for localized lignin deposition in the endodermis. Cell, 153(2), 402–412. https://doi.org/10.1016/j.cell.2013.02.045 DOI: https://doi.org/10.1016/j.cell.2013.02.045
Lewis, N. G., & Yamamoto, E. (1990). Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 455–496. https://doi.org/10.1146/annurev.pp.41.060190.002323 DOI: https://doi.org/10.1146/annurev.pp.41.060190.002323
Li, L., Xiao Fei Cheng, Leshkevich, J., Umezawa, T., Harding, S. A., & Chiang, V. L. (2001). The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell, 13(7), 1567–1585. https://doi.org/10.1105/tpc.13.7.1567 DOI: https://doi.org/10.2307/3871387
Li, S., Lens, F., Espino, S., Karimi, Z., Klepsch, M., Schenk, H. J., … Jansen, S. (2016). Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA Journal, 37(2), 152–171. https://doi.org/10.1163/22941932-20160128 DOI: https://doi.org/10.1163/22941932-20160128
Liang, M., Davis, E., Gardner, D., Cai, X., & Wu, Y. (2006). Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 224(5), 1185–1196. https://doi.org/10.1007/s00425-006-0300-6 DOI: https://doi.org/10.1007/s00425-006-0300-6
Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and biological functions in plants. International Journal of Molecular Sciences, 19(2), 335. https://doi.org/10.3390/ijms19020335 DOI: https://doi.org/10.3390/ijms19020335
Liu, Z., Persson, S., & Sánchez-Rodríguez, C. (2015). At the border: the plasma membrane-cell wall continuum. Journal of Experimental Botany, 66(6), 1553–1563. https://doi.org/10.1093/jxb/erv019 DOI: https://doi.org/10.1093/jxb/erv019
Lu, F., & Ralph, J. (2010). Lignin. In Run-Cang (Ed.), Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels (pp. 169–207). https://doi.org/10.1016/B978-0-444-53234-3.00006-7 DOI: https://doi.org/10.1016/B978-0-444-53234-3.00006-7
Lucas, W. J., Groover, A., Lichtenberger, R., Furuta, K., Yadav, S. R., Helariutta, Y., … Kachroo, P. (2013). The plant vascular system: evolution, development and functions. Journal of Integrative Plant Biology, 55(4), 294–388. https://doi.org/10.1111/jipb.12041 DOI: https://doi.org/10.1111/jipb.12041
Luna, M. L., Giacosa, J. P. R., Giudice, G. E., Fernández, P. V., Ciancia, M., & Saparrat, M. C. N. (2015). Structure and chemistry of the xylem of arborescent species of Blechnum from South America. IAWA Journal, 36(1), 3–21. https://doi.org/10.1163/22941932-00000081 DOI: https://doi.org/10.1163/22941932-00000081
Maceda, A., Soto-Hernández, M., Peña-Valdivia, C. B., Trejo-López, C., & Terrazas, T. (2019). Differences in the structural chemical composition of the primary xylem of Cactaceae: a topochemical perspective Frontiers in Plant Science, 10, 1497. https://doi.org/10.3389/fpls.2019.01497 DOI: https://doi.org/10.3389/fpls.2019.01497
Maeda, H. A. (2016). Lignin biosynthesis: Tyrosine shortcut in grasses. Nature Plants, 2(6), 1–2. https://doi.org/10.1038/NPLANTS.2016.80 DOI: https://doi.org/10.1038/nplants.2016.80
Maherali, H., Pockman, W. T., & Jackson, R. B. (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85(8), 2184–2199. https://doi.org/10.1890/02-0538 DOI: https://doi.org/10.1890/02-0538
Malavasi, U. C., Davis, A. S., & Malavasi, M. de M. (2016). Lignin in woody plants under water stress: A review. Floresta e Ambiente, 23(4), 589–597. https://doi.org/10.1590/2179-8087.143715 DOI: https://doi.org/10.1590/2179-8087.143715
Marques, A. V., Rencoret, J., Gutiérrez, A., Del Río, J. C., & Pereira, H. (2016). Ferulates and lignin structural composition in cork. Holzforschung, 70(4), 275–289. https://doi.org/10.1515/hf-2015-0014 DOI: https://doi.org/10.1515/hf-2015-0014
Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C., & Ralph, J. (2009). Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Current Biology, 19(2), 169–175. https://doi.org/10.1016/j.cub.2008.12.031 DOI: https://doi.org/10.1016/j.cub.2008.12.031
Ménard, D., & Pesquet, E. (2015). Cellular interactions during tracheary elements formation and function. Current Opinion in Plant Biology, 23, 109–115. https://doi.org/10.1016/j.pbi.2014.12.001 DOI: https://doi.org/10.1016/j.pbi.2014.12.001
Menden, B., Kohlhoff, M., & Moerschbacher, B. M. (2007). Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry, 68(4), 513–520. https://doi.org/10.1016/j.phytochem.2006.11.011 DOI: https://doi.org/10.1016/j.phytochem.2006.11.011
Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266–277. https://doi.org/10.1016/j.pbi.2008.03.006 DOI: https://doi.org/10.1016/j.pbi.2008.03.006
Moura, J. C. M. S., Bonine, C. A. V., de Oliveira Fernandes, V. J., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52(4), 360–376. https://doi.org/10.1111/j.1744-7909.2010.00892.x DOI: https://doi.org/10.1111/j.1744-7909.2010.00892.x
Niklas, K. J., Cobb, E. D., & Matas, A. J. (2017). The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. Journal of Experimental Botany, 68(19), 5261–5269. https://doi.org/10.1093/jxb/erx215 DOI: https://doi.org/10.1093/jxb/erx215
Ostergaard, L., Teilum, K., Mirza, O., Mattsson, O., Petersen, M., Welinder, K. G., … Henriksen, A. (2000). Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Molecular Biology, 44(2), 231–243. https://doi.org/10.1023/a:1006442618860 DOI: https://doi.org/10.1023/A:1006442618860
Pereira, L., Domingues-Junior, A. P., Jansen, S., Choat, B., & Mazzafera, P. (2018). Is embolism resistance in plant xylem associated with quantity and characteristics of lignin? Trees - Structure and Function, 32, 349–358. https://doi.org/10.1007/s00468-017-1574-y DOI: https://doi.org/10.1007/s00468-017-1574-y
Pesquet, E., Zhang, B., Gorzsás, A., Puhakainen, T., Serk, H., Escamez, S., … Tuominen, H. (2013). Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans. Plant Cell, 25(4), 1314–1328. https://doi.org/10.1105/tpc.113.110593 DOI: https://doi.org/10.1105/tpc.113.110593
Peter, G., & Neale, D. (2004). Molecular basis for the evolution of xylem lignification. Current Opinion in Plant Biology, 7(6), 737–742. https://doi.org/10.1016/j.pbi.2004.09.002 DOI: https://doi.org/10.1016/j.pbi.2004.09.002
Pittermann, J. (2010). The evolution of water transport in plants: an integrated approach. Geobiology, 8(2), 112–139. https://doi.org/10.1111/j.1472-4669.2010.00232.x DOI: https://doi.org/10.1111/j.1472-4669.2010.00232.x
Pomar, F., Merino, F., & Barceló, A. R. (2002). O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma, 220(1–2), 17–28. https://doi.org/10.1007/s00709-002-0030-y DOI: https://doi.org/10.1007/s00709-002-0030-y
Popper, Z. A., Michel, G., Hervé, C., Domozych, D. S., Willats, W. G. T., Tuohy, M. G., … Stengel, D. B. (2011). Evolution and diversity of plant cell walls: from algae to flowering plants. Annual Review of Plant Biology, 62(1), 567–590. https://doi.org/10.1146/annurev-arplant-042110-103809 DOI: https://doi.org/10.1146/annurev-arplant-042110-103809
Quiroga, M., Guerrero, C., Botella, M. A., Barceló, A., Amaya, I., Medina, M. I., … Valpuesta, V. (2000). A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiology, 122(4), 1119–1127. https://doi.org/10.1104/pp.122.4.1119 DOI: https://doi.org/10.1104/pp.122.4.1119
Ralph, J. (2010). Hydroxycinnamates in lignification. Phytochemistry Reviews, 9(1), 65–83. https://doi.org/10.1007/s11101-009-9141-9 DOI: https://doi.org/10.1007/s11101-009-9141-9
Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., … Boerjan, W. (2004). Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochemistry Reviews, 3(1–2), 29–60. https://doi.org/10.1023/B:PHYT.0000047809.65444.a4 DOI: https://doi.org/10.1023/B:PHYT.0000047809.65444.a4
Renault, H., Alber, A., Horst, N. A., Basilio Lopes, A., Fich, E. A., Kriegshauser, L., … Werck-Reichhart, D. (2017). A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nature Communications, 8. https://doi.org/10.1038/ncomms14713 DOI: https://doi.org/10.1038/ncomms14713
Renault, H., Werck-Reichhart, D., & Weng, J. K. (2019). Harnessing lignin evolution for biotechnological applications. Current Opinion in Biotechnology, 56, 105–111. https://doi.org/10.1016/j.copbio.2018.10.011 DOI: https://doi.org/10.1016/j.copbio.2018.10.011
Reyes-Rivera, J., Canché-Escamilla, G., Soto-Hernández, M., & Terrazas, T. (2018). Structural characterization of lignin in four cacti wood: implications of lignification in the growth form and succulence. Frontiers in Plant Science, 9, 1518. https://doi.org/10.3389/fpls2018.01518 DOI: https://doi.org/10.3389/fpls.2018.01518
Rippert, P., Puyaubert, J., Grisollet, D., Derrier, L., & Matringe, M. (2009). Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiology, 149(3), 1251–1260. https://doi.org/10.1104/pp.108.130070 DOI: https://doi.org/10.1104/pp.108.130070
Ros Barceló, A. (2005). Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta, 220(5), 747–756. https://doi.org/10.1007/s00425-004-1394-3 DOI: https://doi.org/10.1007/s00425-004-1394-3
Ros Barceló, A., Gómez Ros, L. V., Gabaldón, C., López-Serrano, M., Pomar, F., Carrión, J. S., & Pedreño, M. A. (2004). Basic peroxidases: The gateway for lignin evolution? Phytochemistry Reviews, 3(1–2), 61–78. https://doi.org/10.1023/B:PHYT.0000047803.49815.1a DOI: https://doi.org/10.1023/B:PHYT.0000047803.49815.1a
Ruel, K., Montiel, M. D., Goujon, T., Jouanin, L., Burlat, V., & Joseleau, J. P. (2002). Interrelation between lignin deposition and polysaccharide matrices during the assembly of plant cell walls. Plant Biology, 4(1), 2–8. https://doi.org/10.1055/s-2002-20429 DOI: https://doi.org/10.1055/s-2002-20429
Russell, W. R., Forrester, A. R., Chesson, A., & Burkitt, M. J. (1996). Oxidative coupling during lignin polymerization is determined by unpaired electron delocalization within parent phenylpropanoid radicals. Archives of Biochemistry and Biophysics, 332(2), 357–366. https://doi.org/10.1006/abbi.1996.0353 DOI: https://doi.org/10.1006/abbi.1996.0353
Růžička, K., Ursache, R., Hejátko, J., & Helariutta, Y. (2015). Xylem development - from the cradle to the grave. The New Phytologist, 207(3), 519–535. https://doi.org/10.1111/nph.13383 DOI: https://doi.org/10.1111/nph.13383
Scholz, A., Rabaey, D., Stein, A., Cochard, H., Smets, E., & Jansen, S. (2013). The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiology, 33(7), 684–694. https://doi.org/10.1093/treephys/tpt050 DOI: https://doi.org/10.1093/treephys/tpt050
Serk, H., Gorzsás, A., Tuominen, H., & Pesquet, E. (2015). Cooperative lignification of xylem tracheary elements. Plant Signaling and Behavior, 10(4), 1–5. https://doi.org/10.1080/15592324.2014.1003753
Sirokmány, G., & Geiszt, M. (2019). The relationship of NADPH oxidases and heme peroxidases: Fallin’ in and out. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00394 DOI: https://doi.org/10.3389/fimmu.2019.00394
Skyba, O., Douglas, C. J., & Mansfield, S. D. (2013). Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Applied and Environmental Microbiology, 79(8), 2560–2571. https://doi.org/10.1128/AEM.03182-12 DOI: https://doi.org/10.1128/AEM.03182-12
Smith, R. A., Schuetz, M., Karlen, S. D., Bird, D., Tokunaga, N., Sato, Y., … Samuels, A. L. (2017). Defining the diverse cell populations contributing to lignification in Arabidopsis stems. Plant Physiology, 174(2), 1028–1036. https://doi.org/10.1104/pp.17.00434 DOI: https://doi.org/10.1104/pp.17.00434
Smith, R. A., Schuetz, M., Roach, M., Mansfield, S. D., Ellis, B., & Samuels, L. (2013). Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell, 25(10), 3988–3999. https://doi.org/10.1105/tpc.113.117176 DOI: https://doi.org/10.1105/tpc.113.117176
Sørensen, I., Pettolino, F. A., Bacic, A., Ralph, J., Lu, F., O’Neill, M. A., … Willats, W. G. T. (2011). The charophycean green algae provide insights into the early origins of plant cell walls. The Plant Journal: For Cell and Molecular Biology, 68(2), 201–211. https://doi.org/10.1111/j.1365-313X.2011.04686.x DOI: https://doi.org/10.1111/j.1365-313X.2011.04686.x
Sperry, J S, Hacke, U. G., Feild, T. S., Sano, Y., & Sikkema, E. H. (2007). Hydraulic consequences of vessel evolution in angiosperms. International Journal of Plant Sciences, 168, 1127–1139. https://doi.org/10.1086/520726 DOI: https://doi.org/10.1086/520726
Sperry, J. S. (2003). Evolution of water transport and xylem structure. International Journal of Plant Sciences, 164(SUPPL. 3), 115–127. https://doi.org/10.1086/368398 DOI: https://doi.org/10.1086/368398
Sterjiades, R., Dean, J. F. D., Gamble, G., Himmelsbach, D. S., & Eriksson, K. E. L. (1993). Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures - Reactions with monolignols and lignin model compounds. Planta, 190(1), 75–87. https://doi.org/10.1007/BF00195678 DOI: https://doi.org/10.1007/BF00195678
Tobimatsu, Y., Chen, F., Nakashima, J., Escamilla-Treviño, L. L., Jackson, L., Dixon, R. A., & Ralph, J. (2013). Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell, 25(7), 2587–2600. https://doi.org/10.1105/tpc.113.113142 DOI: https://doi.org/10.1105/tpc.113.113142
Tobimatsu, Y., & Schuetz, M. (2019). Lignin polymerization: how do plants manage the chemistry so well? Current Opinion in Biotechnology, 56, 75–81. https://doi.org/10.1016/j.copbio.2018.10.001 DOI: https://doi.org/10.1016/j.copbio.2018.10.001
Tuyet Lam, T. B., Iiyama, K., & Stone, B. A. (1992). Cinnamic acid bridges between cell wall polymers in wheat and phalaris internodes. Phytochemistry, 31(4), 1179–1183. https://doi.org/10.1016/0031-9422(92)80256-E DOI: https://doi.org/10.1016/0031-9422(92)80256-E
Valério, L., De Meyer, M., Penel, C., & Dunand, C. (2004). Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry, 65(10), 1331–1342. https://doi.org/10.1016/j.phytochem.2004.04.017 DOI: https://doi.org/10.1016/j.phytochem.2004.04.017
Vanholme, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153(3), 895–905. https://doi.org/10.1104/pp.110.155119 DOI: https://doi.org/10.1104/pp.110.155119
Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2–20. https://doi.org/10.1093/mp/ssp106 DOI: https://doi.org/10.1093/mp/ssp106
Weng, J.-K., Banks, J. A., & Chapple, C. (2008). Parallels in lignin biosynthesis: A study in Selaginella moellendorffii reveals convergence across 400 million years of evolution. Communicative & Integrative Biology, 1(1), 20–22. https://doi.org/10.4161/cib.1.1.6466 DOI: https://doi.org/10.4161/cib.1.1.6466
Weng, J.-K., Li, X., Stout, J., & Chapple, C. (2008). Independent origins of syringyl lignin in vascular plants. Proceedings of the National Academy of Sciences of the United States of America, 105(22), 7887–7892. https://doi.org/10.1073/pnas.0801696105 DOI: https://doi.org/10.1073/pnas.0801696105
Weng, J. K., & Chapple, C. (2010). The origin and evolution of lignin biosynthesis. New Phytologist, 187(2), 273–285. https://doi.org/10.1111/j.1469-8137.2010.03327.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03327.x
Xie, M., Zhang, J., Tschaplinski, T. J., Tuskan, G. A., Chen, J. G., & Muchero, W. (2018). Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Frontiers in Plant Science, 9, 1427. https://doi.org/10.3389/fpls.2018.01427 DOI: https://doi.org/10.3389/fpls.2018.01427
Yu, O., & Kim, K. H. (2020). Lignin to materials: A focused review on recent novel lignin applications. Applied Sciences, 10(13), 4626. https://doi.org/10.3390/app10134626 DOI: https://doi.org/10.3390/app10134626
Zhao, Q., Nakashima, J., Chen, F., Yin, Y., Fu, C., Yun, J., … Dixon, R. A. (2013). LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 25(10), 3976–3987. https://doi.org/10.1105/tpc.113.117770 DOI: https://doi.org/10.1105/tpc.113.117770
Zhao, Q., Wang, H., Yin, Y., Xu, Y., Chen, F., & Dixon, R. A. (2010). Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14496–14501. https://doi.org/10.1073/pnas.1009170107 DOI: https://doi.org/10.1073/pnas.1009170107
Zhu, Y., Du, B., Qian, J., Zou, B., & Hua, J. (2013). Disease resistance gene-induced growth inhibition is enhanced by rcd1 independent of defense activation in Arabidopsis. Plant Physiology, 161(4), 2005–2013. https://doi.org/10.1104/pp.112.213363 DOI: https://doi.org/10.1104/pp.112.213363
Publicado
Cómo citar
-
Resumen17019
-
LENS17611
-
PDF2539
Número
Sección
Licencia
Derechos de autor 2021 Madera y Bosques

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.