Geofísica para la prospección agrícola y forestal: guía para interpretar imágenes del subsuelo
DOI:
https://doi.org/10.21829/myb.2021.2712172Palabras clave:
mapeo de raíces, métodos no-invasivos, radargramas, sistemas semi-áridos, técnicas geofísicas, tomogramasResumen
La aplicación de técnicas de detección geofísica para mapear el subsuelo de campos agrícolas y forestales se ha acelerado en los últimos años. La obtención de imágenes geofísicas proporciona una alternativa o complemento a los métodos tradicionales para recopilar variables subsuperficiales a lo largo del tiempo y el espacio. Donde anteriormente el estándar era el muestreo de suelos y el análisis de laboratorio para evaluar la condición de un suelo para diversos propósitos, las técnicas de detección in situ están demostrando ser una forma muy efectiva para evaluar la variación de las propiedades del suelo / subsuelo. Este trabajo es una revisión del estado del arte relacionada con las técnicas geofísicas más aplicadas en la detección de las características y propiedades del subsuelo que influyen en la productividad y el funcionamiento de los ecosistemas forestales y sistemas agrícolas. En esta revisión se destacan las oportunidades, aplicaciones y retos que presentan las imágenes geofísicas (radargramas y tomogramas) en los campos multidisciplinarios de las biogeociencias. Las dos técnicas de investigación geofísica son muy atractivas para la comunidad científica, pues permiten mapear con precisión el subsuelo, graficar enraizamiento y monitorear contenidos de agua, identificar movimiento de sales y agroquímicos. Los agrónomos, silvicultores y la comunidad científica, podrían beneficiarse de la adopción de estas tecnologías de imágenes escalables y mínimamente invasivas para explorar el subsuelo y avanzar en nuestra investigación colectiva.
Descargas
Citas
Akpan, A. E., Ilori, A. O., & Essien, N. U. (2015). Geophysical investigation of Obot Ekpo Landslide site, Cross River State, Nigeria. Journal of African Earth Sciences, 109, 154-167. doi: 10.1016/j.jafrearsci.2015.05.015 DOI: https://doi.org/10.1016/j.jafrearsci.2015.05.015
Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, 6(8), 1-55. doi:10.1890/es15-00203.1 DOI: https://doi.org/10.1890/ES15-00203.1
Allred, B. (2013). A GPR Agricultural Drainage Pipe Detection Case Study: Effects of Antenna Orientation Relative to Drainage Pipe Directional Trend. Journal of Environmental & Engineering Geophysics, 18(1), 55-69. doi: 10.2113/JEEG18.1.55 DOI: https://doi.org/10.2113/JEEG18.1.55
Allred, B. J., Fausey, N. R., Chen, C.-C., Peters, L., Youn, H.-S., & Daniels, J. F. (2004). GPR detection of drainage pipes in farmlands, (Vol. 1). Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004, Delft, Netherlands, 2 May 2004. Washington, USA: IEEE Corporate Communications.
Allred, B., Daniels, J. J., & Ehsani, M. R. (Eds.). (2008). General Considerations for Geophysical Methods Applied to Agriculture. Handbook of Agricultural Geophysics. 14 pp. Boca Ratón. USA: CRC Press. doi: 10.1201/9781420019353 DOI: https://doi.org/10.1201/9781420019353
Allred, B. J., Freeland, R. S., J. Farahani, H. J., & Collins, M. E. (2010). Agricultural Geophysics: Past, Present, and Future. Conference Proceedings, 23rd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, April 2010, cp 175-00023: European Association of Geoscientists & Engineers. doi: 10.3997/2214-4609-pdb.175.SAGEEP023 DOI: https://doi.org/10.3997/2214-4609-pdb.175.SAGEEP023
Amato, M., Bitella, G., Rossi, R., Gómez, J. A., Lovelli, S., & Gomes, J. J. F. (2009). Multi-electrode 3D resistivity imaging of alfalfa root zone. European Journal of Agronomy, 31(4), 213-222. doi: 10.1016/j.eja.2009.08.005 DOI: https://doi.org/10.1016/j.eja.2009.08.005
Barone, P. M., & Di Maggio, R. M. (2019). Forensic geophysics: ground penetrating radar (GPR) techniques and missing persons investigations. Forensic Sciences Research, 4(4), 337-340. doi: 10.1080/20961790.2019.1675353 DOI: https://doi.org/10.1080/20961790.2019.1675353
Barton, C. V., & Montagu, K. D. (2004). Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol, 24(12), 1323-1331. doi: 10.1093/treephys/24.12.1323 DOI: https://doi.org/10.1093/treephys/24.12.1323
Bitella, G., Rossi, R., Loperte, A., Satriani, A., Lapenna, V., Perniola, M., & Amato, M. (2015). Geophysical Techniques for Plant, Soil, and Root Research Related to Sustainability. En A. Vastola (Ed.), The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin (pp. 353-372). Cham: Springer International Publishing. doi: 10.1007/978-3-319-16357-4_23 DOI: https://doi.org/10.1007/978-3-319-16357-4_23
Boenecke, E., Lueck, E., Ruehlmann, J., Gruendling, R., & Franko, U. (2018). Determining the within-field yield variability from seasonally changing soil conditions. Precision Agriculture, 19(4), 750-769. doi: 10.1007/s11119-017-9556-z DOI: https://doi.org/10.1007/s11119-017-9556-z
Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan, D. L., Papuga, S. A., Roering, J., Dawson, T. E., Evaristo, J., Chadwick, O., McDonnell, J., & Weathers, K. C. (2017). Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences, 14(22), 5115-5142. doi: 10.5194/bg-14-5115-2017 DOI: https://doi.org/10.5194/bg-14-5115-2017
Brassard, B. W., Chen, H. Y. H., & Bergeron, Y. (2009). Influence of Environmental Variability on Root Dynamics in Northern Forests. Critical Reviews in Plant Sciences, 28(3), 179-197. doi: 10.1080/07352680902776572 DOI: https://doi.org/10.1080/07352680902776572
Bruckshaw, J. McG. (1941). Geophysical Prospecting for Oil. Nature, 148(3745), 151-152. doi: 10.1038/148151a0 DOI: https://doi.org/10.1038/148151a0
Bruckshaw, J. M. (1948). The application of geophysics to geology. Proceedings of the Geologists' Association, 59(3), 113-130,IN1-IN13. doi: 10.1016/S0016-7878(48)80015-5 DOI: https://doi.org/10.1016/S0016-7878(48)80015-5
Butnor, J. R., Doolittle, J. A., Kress, L., Cohen, S., & Johnsen, K. H. (2001). Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiology, 21(17), 1269-1278. DOI: https://doi.org/10.1093/treephys/21.17.1269
Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583-595. doi: 10.1007/bf00329030 DOI: https://doi.org/10.1007/BF00329030
Cassiani, G., Boaga, J., Vanella, D., Perri, M. T., & Consoli, S. (2015). Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrology and Earth System Sciences, 19(5), 2213-2225. doi: 10.5194/hess-19-2213-2015 DOI: https://doi.org/10.5194/hess-19-2213-2015
Cermák, J., Nadezhdina, N., Trcala, M., & Simon, J. (2015). Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. Iforest-Biogeosciences and Forestry, 8(3), 226-278. doi: 10.3832/ifor1116-008 DOI: https://doi.org/10.3832/ifor1116-008
Chow, T. L., & Rees, H. W. (1989). Identification of subsurface drain locations with ground-penetrating radar. Canadian Journal of Soil Science, 69(2), 223-234. doi: 10.4141/cjss89-023 DOI: https://doi.org/10.4141/cjss89-023
Cimpoiasu, M. O., Kuras, O., Pridmore, T., & Mooney, S. J. (2020). Potential of geoelectrical methods to monitor root zone processes and structure: A review. Geoderma, 365. doi: 10.1016/j.geoderma.2020.114232 DOI: https://doi.org/10.1016/j.geoderma.2020.114232
Collins, M. E., Doolittle, J. A., & Rourke, R. V. (1989). Mapping Depth to Bedrock on a Glaciated Landscape with Ground-Penetrating Radar. Soil Science society of America Journal, 53(6), 1806-1812. doi: 10.2136/sssaj1989.03615995005300060032x DOI: https://doi.org/10.2136/sssaj1989.03615995005300060032x
Consoli, S., Stagno, F., Vanella, D., Boaga, J., Cassiani, G., & Roccuzzo, G. (2017). Partial root-zone drying irrigation in orange orchards: Effects on water use and crop production characteristics. European Journal of Agronomy, 82(A), 190-202. doi: 10.1016/j.eja.2016.11.001 DOI: https://doi.org/10.1016/j.eja.2016.11.001
Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46(1-3), 11-43. doi: 10.1016/j.compag.2004.10.005 DOI: https://doi.org/10.1016/j.compag.2004.10.005
Corwin, D. L., & Scudiero, E. (2019). Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. En D. L. Sparks (Ed.), Advances in Agronomy, Vol 158 (pp. 1-130). Incluir ciudad, país: editorial. DOI: https://doi.org/10.1016/bs.agron.2019.07.001
Cui, X., Chen, J., Shen, J., Cao, X., Chen, X., & Zhu, X. (2011). Modeling tree root diameter and biomass by ground-penetrating radar. Science China Earth Sciences, 54(5), 711-719. doi: 10.1007/s11430-010-4103-z DOI: https://doi.org/10.1007/s11430-010-4103-z
David, T. S., Pinto, C. A., Nadezhdina, N., Kurz-Besson, C., Henriques, M. O., Quilhó, T., Cermak, J., Chaves, M. M., Pereira. J. S., & David, J. S. (2013). Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. Forest Ecology and Management, 307, 136-146. doi: 10.1016/j.foreco.2013.07.012 DOI: https://doi.org/10.1016/j.foreco.2013.07.012
Dawson, T. E., Hahm, W. J., & Crutchfield-Peters, K. (2020). Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. 226(3), 666-671. doi: 10.1111/nph.16410 DOI: https://doi.org/10.1111/nph.16410
Dezert, T., Fargier, Y., Palma Lopes, S., & Côte, P. (2019). Geophysical and geotechnical methods for fluvial levee investigation: A review. Engineering Geology, 260, 105206. doi: 10.1016/j.enggeo.2019.105206 DOI: https://doi.org/10.1016/j.enggeo.2019.105206
Diallo, M. C., Cheng, L. Z., Rosa, E., Gunther, C., & Chouteau, M. (2019). Integrated GPR and ERT data interpretation for bedrock identification at Cléricy, Québec, Canada. Engineering Geology, 248, 230-241. doi: 10.1016/j.enggeo.2018.09.011 DOI: https://doi.org/10.1016/j.enggeo.2018.09.011
Dornbush, M. E., Isenhart, T. M., & Raich, J. W. (2002). Quantifying Fine-Root Decomposition: An Alternative to Buried Litterbags. Ecology, 83(11), 2985-2990. doi: 10.2307/3071834 DOI: https://doi.org/10.1890/0012-9658(2002)083[2985:QFRDAA]2.0.CO;2
Edlefsen, N. E., & Anderson, A. B. C. (1941). The four-electrode resistance method for measuring soilmoisture content under field conditions. Soil Science, 51(5), 367-376. DOI: https://doi.org/10.1097/00010694-194105000-00004
Estrada-Medina, H., Tuttle, W., Graham, R. C., Allen, M. F., & Jimenez-Osornio, J. J. (2010). Identification of Underground Karst Features using Ground-Penetrating Radar in Northern Yucatan, Mexico. Vadose Zone Journal, 9(3), 653-661. doi: 10.2136/vzj2009.0116 DOI: https://doi.org/10.2136/vzj2009.0116
Fernández-Cirelli, A., Arumí, J. L., Rivera, D., & Boochs, P. W. (2009). Environmental Effects of Irrigation in Arid and Semi-Arid Regions. J Chilean journal of agricultural research, 69, 27-40. DOI: https://doi.org/10.4067/S0718-58392009000500004
Freeland, R. S., Yoder, R. E., & Ammons, J. T. (1998). Mapping shallow underground features that influence site-specific agricultural production. Journal of Applied Geophysics, 40(1-3), 19-27. doi: 10.1016/s0926-9851(98)00014-7 DOI: https://doi.org/10.1016/S0926-9851(98)00014-7
Hagrey, S. A., al (2007). Geophysical imaging of root-zone, trunk, and moisture heterogeneity. Journal of Experimental Botany, 58(4), 839-854. doi:10.1093/jxb/erl237 DOI: https://doi.org/10.1093/jxb/erl237
Halvorson, A. D., & Rhoades, J. D. (1974). Assessing Soil Salinity and Identifying Potential Saline-Seep Areas with Field Soil Resistance Measurements. 38(4), 576-581. doi: 10.2136/sssaj1974.03615995003800040018x DOI: https://doi.org/10.2136/sssaj1974.03615995003800040018x
Hirano, Y., Dannoura, M., Aono, K., Igarashi, T., Ishii, M., Yamase, K., Makita, N. & Kanazawa, Y. (2008). Limiting factors in the detection of tree roots using ground-penetrating radar. Plant and Soil, 319(1), 15. doi: 10.1007/s11104-008-9845-4 DOI: https://doi.org/10.1007/s11104-008-9845-4
Jayawickreme, D. H., Jobbagy, E. G., & Jackson, R. B. (2014). Geophysical subsurface imaging for ecological applications. New Phytologist, 201(4), 1170-1175. doi: 10.1111/nph.12619 DOI: https://doi.org/10.1111/nph.12619
Jayawickreme, D. H., Santoni, C. S., Kim, J. H., Jobbagy, E. G., & Jackson, R. B. (2011). Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. Ecological Applications, 21(7), 2367-2379. doi: 10.1890/10-2086.1 DOI: https://doi.org/10.1890/10-2086.1
Jones, C. M. (2018). The oil and gas industry must break the paradigm of the current exploration model. Journal of Petroleum Exploration and Production Technology, 8(1), 131-142. doi: 10.1007/s13202-017-0395-2 DOI: https://doi.org/10.1007/s13202-017-0395-2
Jones, G. M., Cassidy, N. J., Thomas, P. A., Plante, S., & Pringle, J. K. (2009). Imaging and monitoring tree-induced subsidence using electrical resistivity imaging. Near Surface Geophysics, 7(3), 191-206. doi: 10.3997/1873-0604.2009017 DOI: https://doi.org/10.3997/1873-0604.2009017
Kelly, W. E., & Mares˘, S. (1993). Geophysical Surveys for Hydrogeological Purposes. En W. E. Kelly & S. Mares (Eds.), Developments in Water Science (Vol. 44, pp. 31-99). Lincoln, NE, USA: Elsevier. DOI: https://doi.org/10.1016/S0167-5648(08)70371-X
Khaldaoui, F., Djeddi, M., Zagh, A., & Naa, A. Use of near-surface geophysical methods for forensic investigations. In International Conference on Engineering Geophysics, Al Ain, United Arab Emirates, 9-12 October 2017 (pp. 216-219). DOI: https://doi.org/10.1190/iceg2017-037
Kirkham, D., & Taylor, G. S. (1949). Some Tests of a Four-Electrode Probe for Soil Moisture Measurement. Soil Science of America Journal, 14(C), 42-46. doi: 10.2136/sssaj1950.036159950014000C0010x DOI: https://doi.org/10.2136/sssaj1950.036159950014000C0010x
Kravchenko, A., Bollero, G., Omonode, R. A., & Bullock, D. (2002). Quantitative Mapping of Soil Drainage Classes Using Topographical Data and Soil Electrical Conductivity. Soil Science Society of America Journal, 66(1), 235-243. doi: 10.2136/sssaj2002.0235 DOI: https://doi.org/10.2136/sssaj2002.2350
Leucci, G., Margiotta, S., & Negri, S. (2004). Geophysical and geological investigations in a karstic environment (Salice Salentino, Lecce, Italy). Journal of Environmental and Engineering Geophysics, 9(1), 25-34. doi: 10.4133/jeeg9.1.25 DOI: https://doi.org/10.4133/JEEG9.1.25
Liu, X. W., Dong, X. J., & Leskovar, D. I. (2016). Ground penetrating radar for underground sensing in agriculture: a review. International Agrophysics, 30(4), 533-543. doi: 10.1515/intag-2016-0010 DOI: https://doi.org/10.1515/intag-2016-0010
Lorenzo, H., Perez-Gracia, V., Novo, A., & Armesto, J. (2010). Forestry applications of ground-penetrating radar. Forest Systems, 19(1), 5-17. doi: 10.5424/fs/2010191-01163 DOI: https://doi.org/10.5424/fs/2010191-01163
Lunt, I. A., Hubbard, S. S., & Rubin, Y. (2005). Soil moisture content estimation using ground-penetrating radar reflection data. Journal of Hydrology, 307(1-4), 254-269. doi: 10.1016/j.jhydrol.2004.10.014 DOI: https://doi.org/10.1016/j.jhydrol.2004.10.014
Mares, R., Barnard, H. R., Mao, D. Q., Revil, A., & Singha, K. (2016). Examining diel patterns of soil and xylem moisture using electrical resistivity imaging. Journal of Hydrology, 536, 327-338. doi: 10.1016/j.jhydrol.2016.03.003 DOI: https://doi.org/10.1016/j.jhydrol.2016.03.003
Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., & Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5), 1-20. doi: 10.1029/2002wr001581 DOI: https://doi.org/10.1029/2002WR001581
Morari, F., Castrignano, A., & Pagliarin, C. (2009). Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Computers and Electronics in Agriculture, 68(1), 97-107. doi: 10.1016/j.compag.2009.05.003 DOI: https://doi.org/10.1016/j.compag.2009.05.003
Nadezhdina, N., & Čermák, J. (2003). Instrumental methods for studies of structure and function of root systems of large trees. Journal of Experimental Botany, 54(387), 1511-1521. doi: 10.1093/jxb/erg154 DOI: https://doi.org/10.1093/jxb/erg154
Nimah, M. N., & Hanks, R. J. (1973). Model for Estimating Soil Water, Plant, and Atmospheric Interrelations: I. Description and Sensitivity. Soil Science Society of America Journal, 37(4), 522-527. doi: 10.2136/sssaj1973.03615995003700040018x DOI: https://doi.org/10.2136/sssaj1973.03615995003700040018x
Pawlik, L., & Kasprzak, M. (2018). Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT). Geomorphology, 300, 1-12. doi: 10.1016/j.geomorph.2017.10.002 DOI: https://doi.org/10.1016/j.geomorph.2017.10.002
Paz, C., Alcalá, F. J., Carvalho, J. M., & Ribeiro, L. (2017). Current uses of ground penetrating radar in groundwater-dependent ecosystems research. Science of the Total Environment, 595, 868-885. doi: 10.1016/j.scitotenv.2017.03.210 DOI: https://doi.org/10.1016/j.scitotenv.2017.03.210
Piccoli, I., Furlan, L., Lazzaro, B., & Morari, F. (2019). Examining conservation agriculture soil profiles: Outcomes from northeastern Italian silty soils combining indirect geophysical and direct assessment methods. European Journal of Soil Science, 71(6), 1064-1075. doi: 10.1111/ejss.12861 DOI: https://doi.org/10.1111/ejss.12861
Poot, P., Hopper, S. D., & van Diggelen, J. M. (2012). Exploring rock fissures: does a specialized root morphology explain endemism on granite outcrops? Annals of Botany, 110(2), 291-300. doi: 10.1093/aob/mcr322 DOI: https://doi.org/10.1093/aob/mcr322
Poot, P., & Lambers, H. (2008). Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. New Phytologist, 178(2), 371-381. doi: 10.1111/j.1469-8137.2007.02370.x DOI: https://doi.org/10.1111/j.1469-8137.2007.02370.x
Proust, D., Caillaud, J., Fontaine, C., Fialin, M., Courbe, C., & Dauger, N. (2011). Fissure and mineral weathering impacts on heavy metal distribution in sludge-amended soil. Plant and Soil, 346(1-2), 29-44. doi: 10.1007/s11104-011-0791-1 DOI: https://doi.org/10.1007/s11104-011-0791-1
Querejeta, J. I., Estrada-Medina, H., Allen, M. F., Jimenez-Osornio, J. J., & Ruenes, R. (2006). Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate. Plant and Soil, 287(1-2), 187-197. doi: 10.1007/s11104-006-9065-8 DOI: https://doi.org/10.1007/s11104-006-9065-8
Read, D. W. L., & Cameron, D. R. (1979). Relationship between salinity and Wenner resistivity for some dryland soils. Canadian Journal of Soil Science, 59(4), 381-385. doi: 10.4141/cjss79-043 DOI: https://doi.org/10.4141/cjss79-043
Reedy, R. C., & Scanlon, B. R. (2003). Soil Water Content Monitoring Using Electromagnetic Induction. Journal of Geotechnical and Geoenvironmental Engineering, 129(11), 1028-1039. doi: 10.1061/(ASCE)1090-0241(2003)129:11(1028) DOI: https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1028)
Rodríguez-Robles, U., Arredondo, J. T., Huber-Sannwald, E., & Vargas, R. (2015). Geoecohydrological mechanisms couple soil and leaf water dynamics and facilitate species coexistence in shallow soils of a tropical semiarid mixed forest. New Phytologist, 207(1), 59-69. doi: 10.1111/nph.13344 DOI: https://doi.org/10.1111/nph.13344
Rodriguez-Robles, U., Arredondo, T., Huber-Sannwald, E., Ramos-Leal, J. A., & Yepez, E. A. (2017). Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils. Biogeosciences, 14(23), 5343-5357. doi: 10.5194/bg-14-5343-2017 DOI: https://doi.org/10.5194/bg-14-5343-2017
Rossi, R., Amato, M., Bitella, G., Bochicchio, R., Gomes, J. J. F., Lovelli, S., Martorella, P. & Favale, P. (2011). Electrical resistivity tomography as a non-destructive method for mapping root biomass in an orchard. European Journal of Soil Science, 62(2), 206-215. doi: 10.1111/j.1365-2389.2010.01329.x DOI: https://doi.org/10.1111/j.1365-2389.2010.01329.x
Sánchez-Higueredo, L. E., Ramos-Leal, J. A., Morán-Ramírez, J., Moreno-Casasola Barceló, P., Rodríguez-Robles, U., & Hernández Alarcón, M. E. (2020). Ecohydrogeochemical functioning of coastal freshwater herbaceous wetlands in the Protected Natural Area, Ciénaga del Fuerte (American tropics): Spatiotemporal behaviour. Ecohydrology, 13(2), e2173. doi: 10.1002/eco.2173 DOI: https://doi.org/10.1002/eco.2173
Schroth, G., & Kolbe, D. (1994). A method of processing soil core samples for root studies by subsampling. Biology and Fertility of Soils, 18(1), 60-62. doi: 10.1007/BF00336446 DOI: https://doi.org/10.1007/BF00336446
Schwinning, S. (2010). The ecohydrology of roots in rocks. Ecohydrology, 3(2), 238-245. doi: 10.1002/eco.134 DOI: https://doi.org/10.1002/eco.134
Schwinning, S. (2013). Do we need new rhizosphere models for rock-dominated landscapes? Plant and Soil, 362(1-2), 25-31. doi: 10.1007/s11104-012-1482-2 DOI: https://doi.org/10.1007/s11104-012-1482-2
Senos Matias, M., Marques da Silva, M., Ferreira, P., & Ramalho, E. (1994). A geophysical and hydrogeological study of aquifers contamination by a landfill. Journal of Applied Geophysics, 32(2), 155-162. doi: 10.1016/0926-9851(94)90017-5 DOI: https://doi.org/10.1016/0926-9851(94)90017-5
Soge, A., Popoola, O., & Adetoyinbo, A. (2018). Detection of decay and hollows in living almond trees (Terminalia catappa L. Roxb.) using electrical resistivity method. Journal of the Indian Academy of Wood Science, 15(2), 181-189. doi: 10.1007/s13196-018-0224-3 DOI: https://doi.org/10.1007/s13196-018-0224-3
Steeples, D. (2001). Engineering and environmental geophysics at the millennium. Geophysics, 66, 31-35. doi: 10.1190/1.1444910 DOI: https://doi.org/10.1190/1.1444910
Tardieu, F. (1988). Analysis of the spatial variability of maize root density. Plant and Soil, 107(2), 267-272. doi: 10.1007/BF02370556 DOI: https://doi.org/10.1007/BF02370556
Tennant, D. (1975). A Test of a Modified Line Intersect Method of Estimating Root Length. Journal of Ecology, 63(3), 995-1001. doi: 10.2307/2258617 DOI: https://doi.org/10.2307/2258617
Tinker, P. B. (1976). Transport of Water to Plant Roots in Soil. Philosophical Transactions of the Royal Society of London-Series B, Biological Sciences, 273(927), 445-461. DOI: https://doi.org/10.1098/rstb.1976.0024
Tosti, F., Patriarca, C., Slob, E., Benedetto, A., & Lambot, S. (2013). Clay content evaluation in soils through GPR signal processing. Journal of Applied Geophysics, 97, 69-80. doi: 10.1016/j.jappgeo.2013.04.006 DOI: https://doi.org/10.1016/j.jappgeo.2013.04.006
Triantafilis, J., & Monteiro Santos, F. A. (2013). Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil). Geoderma, 211-212, 28-38. doi: doi.org/10.1016/j.geoderma.2013.06.001 DOI: https://doi.org/10.1016/j.geoderma.2013.06.001
Vanderborght, J., Huisman, J. A., van der Kruk, J., & Vereecken, H. (2013). Geophysical Methods for Field-Scale Imaging of Root Zone Properties and Processes. En S. H. Anderson & J. W. Hopmans (Eds.), Soil-Water-Root Processes: Advances in Tomography and Imaging (Vol. 61, pp. 247-282). Madison, WI, USA: Soil Science Society of America, Inc. DOI: https://doi.org/10.2136/sssaspecpub61.c12
von Hebel, C., Rudolph, S., Mester, A., Huisman, J. A., Kumbhar, P., Vereecken, H., & van der Kruk, J. (2014). Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data. Water Resources Research, 50(3), 2732-2748. doi: 10.1002/2013wr014864 DOI: https://doi.org/10.1002/2013WR014864
Walter, J., Luck, E., Heller, C., Bauriegel, A., & Zeitz, J. (2019). Relationship between electrical conductivity and water content of peat and gyttja: implications for electrical surveys of drained peatlands. Near Surface Geophysics, 17(2), 169-179. doi: 10.1002/nsg.12030 DOI: https://doi.org/10.1002/nsg.12030
Ward, S. H. (1987). Electrical Methods in Geophysical Prospecting. En C. G. Sammis & T. L. Henyey (Eds.), Methods in Experimental Physics (Vol. 24, pp. 265-375). Los Angeles, CA, USA: Academic Press. DOI: https://doi.org/10.1016/S0076-695X(08)60601-8
Welbank, P. J., & Williams, E. D. (1968). Root Growth of a Barley Crop Estimated by Sampling with Portable Powered Soil-Coring Equipment. Journal of Applied Ecology, 5(2), 477-481. doi: 10.2307/2401574 DOI: https://doi.org/10.2307/2401574
Wu, K., Rodriguez, G. A., Zajc, M., Jacquemin, E., Clement, M., De Coster, A., & Lambot, S. (2019). A new drone-borne GPR for soil moisture mapping. Remote Sensing of Environment, 235, 111456. doi: 10.1016/j.rse.2019.111456 DOI: https://doi.org/10.1016/j.rse.2019.111456
Yoder, R. E., Freeland, R. S., Ammons, J. T., & Leonard, L. L. (2001). Mapping agricultural fields with GPR and EMI to identify offsite movement of agrochemicals. Journal of Applied Geophysics, 47(3-4), 251-259. doi: 10.1016/s0926-9851(01)00069-6 DOI: https://doi.org/10.1016/S0926-9851(01)00069-6
Yuan, Z. Y., & Chen, H. Y. H. (2013). Effects of Disturbance on Fine Root Dynamics in the Boreal Forests of Northern Ontario, Canada. Ecosystems, 16(3), 467-477. doi: 10.2307/23501472 DOI: https://doi.org/10.1007/s10021-012-9623-2
Zenone, T., Morelli, G., Teobaldelli, M., Fischanger, F., Matteucci, M., Sordini, M., Armani, A., Ferre, C., Chiti, T. & Seufert, G. (2008). Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Functional Plant Biology, 35(9-10), 1047-1058. doi: 10.1071/fp08062 DOI: https://doi.org/10.1071/FP08062
Publicado
Cómo citar
-
Resumen842
-
PDF442
-
LENS47
Número
Sección
Licencia
Derechos de autor 2021 Madera y Bosques
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.