Vol. 27 Núm. 3 (2021): Otoño 2021
Artículos Científicos

Efecto del tiempo de almacenamiento en la germinación de Haematoxylum campechianum en Campeche, México

Joel Leonel Euan-Tun
Universidad Autónoma de Campeche
Enrique Alfonso González-Durán
Universidad Autónoma de Campeche
José Efraín Ramírez-Benítez
Universidad Autónoma de Campeche
Pedro Zamora-Crescencio
Universidad Autónoma de Campeche
Jorge Albino Vargas-Contreras
Universidad Autónoma de Campeche
Ulises Rodríguez-Robles
Universidad de Guadalajara
Jane Kelita Enríquez-Hernández
Universidad Autónoma de Campeche
José Humberto Caamal-Velázquez
Colegio de Postgraduados
José Luis Aragón-Gastélum
Universidad Autónoma de Campeche

Publicado 2021-12-30

Palabras clave

  • conservation,
  • fresh weight,
  • palo de tinte,
  • recalcitrance,
  • viability
  • conservación,
  • peso fresco,
  • palo de tinte,
  • recalcitrancia,
  • viabilidad

Cómo citar

Euan-Tun, J. L., González-Durán, E. A., Ramírez-Benítez, J. E., Zamora-Crescencio, P., Vargas-Contreras, J. A., Rodríguez-Robles, U., … Aragón-Gastélum, J. L. (2021). Efecto del tiempo de almacenamiento en la germinación de Haematoxylum campechianum en Campeche, México. Madera Y Bosques, 27(3), e2732263. https://doi.org/10.21829/myb.2021.2732263



Haematoxylum campechianum L. (Fabaceae), is an economically and culturally important tropical tree distributed across Central America and the Yucatán Peninsula, Mexico. To contribute to the conservation of this species, it is important to understand the seed germination process; however, research in this subject on H. campechianum remains scarce. We evaluated the relationship between the H. campechianum seed storage time and its fresh weight and germination. Mature seeds were collected in the municipality of Palizada, Campeche, Mexico, from 2016 to 2019, stored at 25 °C and 60%-80% relative humidity until experimentation after the 2019 collection. Seed replicates (10, comprising 25 seeds) were weighed to estimate fresh weight per collection year. Seed viability was determined by means of the tetrazolium test, while germination was carried out in Petri dishes using cotton as a substrate under a 12-hr photoperiod at 25 °C. The seeds collected in 2019 presented a high viability and germination (100% and 98.5% respectively), in contrast with those collected in 2018, which presented a drastic reduction in the values for these parameters (55% and 54%, respectively). Null viability and germination were observed in seeds collected in 2016 and 2017. The seeds collected in 2016 showed the highest fresh weight values than the other years sampled. The results indicate that the viability and germination of H. campechianum seeds were observed to be affected by storage time, the recently harvested seeds presented a higher viability and germination than older seeds. Therefore, the H. campechianum seeds could be recalcitrant because they presented an accelerated ageing process over the collection periods.


Los datos de descargas todavía no están disponibles.


  1. Aragón-Gastélum, J., L., Flores, J., Jurado, E., Ramírez-Tobías, H., M., Robles-Díaz, E., Rodas-Ortiz, J., P., & Yáñez-Espinosa, L. (2018). Potential impact of global warming on seed bank, dormancy and germination of three succulent species from the Chihuahuan Desert. Seed Science Research, 28(4), 312-318. doi: 10.1017/S0960258518000302 DOI: https://doi.org/10.1017/S0960258518000302
  2. Avwioro, G. (2011). Histochemical uses of Haematoxylin: A review. Journal of Physical Chemistry Solids, 1(5), 24-34.
  3. Bailly, C., El-Maarouf-Bouteau, H., & Corbineau, F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies, 331(10), 806-814. doi: 10.1016/j.crvi.2008.07.022 DOI: https://doi.org/10.1016/j.crvi.2008.07.022
  4. Baskin, C. C., & Baskin, J. M. (2014). Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, United States: Academic Press.
  5. Chablé-Vega, M., A., Plasencia-Vázquez, A., H., García-González, A., Ferrer-Sánchez, Y., Riverón-Giró, F., B., & Zamora-Crescencio, P. (2019). Distribución, densidad y estructura dasométrica de Haematoxylum campechianum y Haematoxylum calakmulense en Campeche, México. Ecosistemas y Recursos Agropecuarios, 6(16), 65-77. doi: 10.19136/era.a6n16.1784 DOI: https://doi.org/10.19136/era.a6n16.1784
  6. Centro de Investigación Científica de Yucatán [CICY]. (2010). Flora digital: Península de Yucatán. Herbario CICY. Recuperado de https://www.cicy.mx/sitios/flora%20digital/ficha_virtual.php?especie=1463
  7. Contreras, A. C. (2010). Biodiversidad perdida: el caso de los colorantes. In R. Durán, & M. Méndez (Eds.), Biodiversidad y desarrollo humano en Yucatán (pp. 368-372). Mérida, Yucatán México: CICY, PPD-FMAM, Conabio, Seduma.
  8. Comisión Nacional del Agua [Conagua] (2010). Base de datos mensuales climatológicos correspondientes a la estación de Campeche. Dirección Local Campeche, residencia técnica. Campeche, México.
  9. Durán R., C., & Sousa, M. (2014). Haematoxylum calakmulense (Leguminosae, Caesalpinoideae), una nueva especie Mesoamericana. Novon: A Journal for Botanical Nomenclature, 23(1), 31-36. doi: 10.3417/2011106 DOI: https://doi.org/10.3417/2011106
  10. Dampier, W. (2004). Dos viajes a Campeche (García Bergua A, Trans). CDMX, México: MA Porrúa.
  11. Daniel, W. W., & Cross, C. L. (2018). Biostatistics: a foundation for analysis in the health sciences (11th ed). Hoboken, United States: John Wiley & Sons.
  12. De Oliveira-Gentil, D. F. (2001). Conservação de sementes do cafeeiro: resultados discordantes ou complementares. Bragantia, 60, 149-154. doi: 10.1590/S0006-87052001000300001 DOI: https://doi.org/10.1590/S0006-87052001000300001
  13. Duke, J. A. (2008). Duke’s handbook of medicinal plants of Latin America. Boca Raton, United States: CRC Press. DOI: https://doi.org/10.1201/9781420043174
  14. Ellis, R., H., & Hong, T. D. (2007). Seed longevity – moisture content relationships in hermetic and open storage. Seed Science and Technology, 35(2), 423-431. doi: 10.15258/sst.2007.35.2.17 DOI: https://doi.org/10.15258/sst.2007.35.2.17
  15. Farrant, J., M., Pammenter, N., W., & Berjak, P. (1993). Seed development in relation to desiccation tolerance: a comparison between desiccation sensitive (recalcitrant) seeds of Avicennia marina and desiccation tolerant types. Seed Science Research, 3(1), 1-13. doi: 10.1017/S0960258500001513 DOI: https://doi.org/10.1017/S0960258500001513
  16. Fernández Carnevali, G., C., Tapia Muñoz, J., L., Duno de Stefano, R., Ramírez Morillo, I., M., Can-Itzá, L., Hernández Aguilar, S., & Castillo, A. (2012). La Flora de la Península de Yucatán Mexicana: 250 años de conocimiento florístico. Biodiversitas, 101, 6-10.
  17. Galíndez, G., Malagrina, G., Ceccato, D., Ledesma, T., Lindow-López, L., T., & Ortega Baes, F. P. (2015). Dormición física y conservación ex situ de semillas de Amburana cearensis y Myroxylon peruiferum (Fabaceae). Boletín de la Sociedad Argentina de Botánica, 50(2), 153-161. doi: 10.31055/1851.2372.v50.n2.11660 DOI: https://doi.org/10.31055/1851.2372.v50.n2.11660
  18. Giamminola, E. M., Morandini, M. N., & de Viana, M. L. (2012). Respuesta a la desecación ya la temperatura de almacenamiento del germoplasma de Prosopis nigra (Grisebach) Hieron. y Ziziphus mistol Griseb. Gest. Ambiente, 15(1), 19-26.
  19. Gujarati, D. N., & Porter, D. C. (2009). Basic Econometrics (5th ed.). New York, United States: McGraw-Hill/Irwin.
  20. Halliwell, B. (1987). Oxidants and human disease: some new concepts. The FASEB Journal, 1(5), 358-364. doi: 10.1096/fasebj.1.5.2824268 DOI: https://doi.org/10.1096/fasebj.1.5.2824268
  21. Hill, T., & Lewicki, P. (2006). Statistics: methods and applications. Tulsa, United States: StatSoft.
  22. Huang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10, 800. doi: 10.3389/fpls.2019.00800 DOI: https://doi.org/10.3389/fpls.2019.00800
  23. Huyghe, C. (1993). Growth of white lupin seedlings during the rosette stage as affected by seed size. Agronomie, 13(2), 145-153. DOI: https://doi.org/10.1051/agro:19930209
  24. Khurana, E., & Singh, J. S. (2001). Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environmental Conservation, 28(1), 39-52. doi: 10.1017/S0376892901000042 DOI: https://doi.org/10.1017/S0376892901000042
  25. Langer, R., & Hill, G. (1991). Fabaceae. In Agricultural Plants (pp. 217-282). Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139170284.013 DOI: https://doi.org/10.1017/CBO9781139170284.013
  26. Lobos, J., Miranda, H., & Mera, M. (2008). Weight and volume gain by hydrated grains of bitter albus lupins grown in Chile. In J. A. Palta, & J. B. Berger (Eds.), Lupins for health and wealth. International Lupin Association (pp. 105-107). Canterbury, New Zealand.
  27. Loza-Cornejo, S., López-Mata, L., & Terrazas, T. (2008). Morphological seed traits and germination of six species of Pachycereeae (Cactaceae). Journal of the Professional Association for Cactus Development, 10, 71-84.
  28. McKellar, R. C., & Lu, X. (2004). Modeling microbial responses in foods. Boca Raton, United States: CRC. DOI: https://doi.org/10.1201/9780203503942
  29. Morandini, N. M., Giamminola, E. M., & de Viana, M. L. (2013). Tolerancia a la desecación de semillas de Prosopis ferox y Pterogyne nitens (Fabaceae). Revista de Biología Tropical, 61(1), 335-342. DOI: https://doi.org/10.15517/rbt.v61i1.11132
  30. Morrone, J. J. (2005). Toward a synthesis of Mexican biogeography. Revista Mexicana de Biodoversidad, 76(2), 207-252. DOI: https://doi.org/10.22201/ib.20078706e.2005.002.303
  31. Niembro, A. (2002). Haematoxylum campechianum L. In J. A. Vozzo (Ed.), Tropical tree seed manual, Part 2 Species Descriptions (pp. 497-499). Washington DC: USDA Forest Service.
  32. Nobel, P. S. (2011). Sabiduría del desierto, agaves y cactos: CO2, agua, cambio climático/Desert wisdom/agaves and cacti (No. 625.9525 N664s Ej. 1 024989). Biblioteca Básica de Agricultura.
  33. Norton, S. A. (1996). The useful plants of dermatology. II. Haematoxylum and hematoxylin. Journal of the American Academy of Dermatology, 34(1), 149-151. doi: 10.1016/S0190-9622(96)90867-1 DOI: https://doi.org/10.1016/S0190-9622(96)90867-1
  34. Peng, T., Wu, J., R., Tong, L., J., Li, M., Y., Chen, F., Leng, Y., X., Qu, R., Han, K., Su, Y., Chen, Y., Duan, W., H., Xie, H., & Ding, J. (2014). Identification of DW532 as a novel anti-tumor agent targeting both kinases and tubulin. Acta Pharmacologica Sinica, 35(7), 916-928. doi: 10.1038/aps.2014.33 DOI: https://doi.org/10.1038/aps.2014.33
  35. Pérez, I. (2014). Tolerancia y capacidad de fitorremediación de árboles nativos tropicales a suelo contaminado con petróleo. Tesis de Doctorado, El Colegio de la Frontera Sur. Villahermosa, Tabasco, México.
  36. Peters, J. (2000). Tetrazolium Testing Handbook. Las Cruces, United States: Association of Official Seed Analysts.
  37. Plasencia-Vázquez, A. H., Villegas, P., Ferrer-Sánchez, Y., & Zamora-Crescencio, P. (2017). Historical distribution of species of the genus Haematoxylum (Leguminosae) in the Yucatan Peninsula, Mexico, based on herbarium specimens. Acta Botánica Mexicana, 119, 51-68. doi: 10.21829/abm119.2017.1231 DOI: https://doi.org/10.21829/abm119.2017.1231
  38. Pritchard, H. W. (2004). Classification of seed storage types for ex situ conservation in relation to temperature and moisture. In E. O. Guerrant, K. Havens, & M. Maunder, (Eds.), Ex situ plant conservation: supporting species survival in the wild (pp. 139-161). Washington, United States: Island Press.
  39. Quezada-Euán, J. J. G., May-Itzá, W. D. J., & González-Acereto, J. A. (2001). Meliponiculture in Mexico: problems and perspective for development. Bee World, 82(4), 160-167. doi: 10.1080/0005772X.2001.11099523 DOI: https://doi.org/10.1080/0005772X.2001.11099523
  40. Rangel Fajardo, M., Córdova-Téllez, L., López Andrade, A. P., Delgado Alvarado, A., Zavaleta Mancera, H. A., & Villegas Monter, A. (2011). Desiccation tolerance in seeds from three genetic origins of cocoa (Theobroma cacao L.). Revista Fitotecnia Mexicana, 34(3), 175-182. DOI: https://doi.org/10.35196/rfm.2011.3.175
  41. Roberts, E. H. (1973). Predicting the storage life of seeds. Seed Science and Technology, 1, 499-514.
  42. Rojas-Aréchiga, M., Mandujano, M. C., & Golubov, J. K. (2013). Seed size and photoblastism in species belonging to tribe Cacteae (Cactaceae). Journal of Plant Research, 126(3), 373–386. doi: 10.1007/s10265-012-0526-2 DOI: https://doi.org/10.1007/s10265-012-0526-2
  43. Rueda, X. (2010). Understanding deforestation in the southern Yucatán: insights from a sub-regional, multi-temporal analysis. Regional Environmental Change, 10(3), 175-189. doi: 10.1007/s10113-010-0115-7 DOI: https://doi.org/10.1007/s10113-010-0115-7
  44. Sánchez-Rendón, J. A., Pernús-Álvarez, M., Torres-Arias, Y., Barrios, D., & Dupuig, D. (2019). Dormancy and germination in tree and shrub seeds of Cuba: implications for ecological restoration. Acta Botánica Cubana, 218, 77-108.
  45. Servicio Meteorológico Nacional [SMN]. (2020). Normales climatológicas por estado. Recuperado de https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/normales-climatologicas-por-estado
  46. Thompson, K. (2000). The functional ecology of soil seed banks. In M. Fenner (Ed.), Seeds, the ecology of regeneration in plant communities (2nd ed.) (pp 215-235). London, United Kingdom: CABI Publishing. DOI: https://doi.org/10.1079/9780851994321.0215
  47. Tweddle, J. C., Dickie, J. B., Baskin, C. C., & Baskin, J. M. (2003). Ecological aspects of seed desiccation sensitivity. Journal of Ecology, 91(2), 294-304. doi: 10.1046/j.1365-2745.2003.00760.x DOI: https://doi.org/10.1046/j.1365-2745.2003.00760.x
  48. Villegas, P., & Torras, R. (2014). The extraction and exportation of Campeche wood by foreign colonists: the case of B. Anizan and Cía. Secuencia, 90, 79-93. DOI: https://doi.org/10.18234/secuencia.v0i90.1238
  49. Wang, J. H., Baskin, C. C., Cui, X. L., & Du, G. Z. (2009). Effect of phylogeny, life history and habitat correlates on seed germination of 69 arid and semiarid zone species from northwest China. Evolutionary Ecology, 23(6), 827–846. doi: 10.1007/s10682-008-9273-1 DOI: https://doi.org/10.1007/s10682-008-9273-1
  50. Wyse, S. V., & Dickie, J. B. (2017). Predicting the global incidence of seed desiccation sensitivity. Journal of Ecology, 105(4), 1082-1093. doi: 10.1111/1365-2745.12725 DOI: https://doi.org/10.1111/1365-2745.12725
  51. Zamora-Cornelio, L. F. (2010). Evaluación espacio-temporal del crecimiento de plántulas con potencial para la restauración de humedales. Tesis de Maestría. El Colegio de la Frontera Sur. Villahermosa, Tabasco, México.
  52. Zamora-Cornelio, L. F., Ochoa-Gaona, S., Vargas Simón, G., Castellanos Albores, J., & de Jong, B. H. J. (2010). Germinación de semillas y clave para la identificación de plántulas de seis especies arbóreas nativas de humedales del sureste de México. Revista de Biología Tropical, 58(2), 717-732. DOI: https://doi.org/10.15517/rbt.v58i2.5241