Publicado 2023-04-26
Palabras clave
- eddy covariance and fluxes,
- evapotranspiration,
- net ecosystem exchange,
- gross ecosystem productivity,
- ecosystem respiration
- covarianza de vórtices y flujos,
- evapotranspiración,
- intercambio neto de carbono,
- productividad bruta del ecosistema,
- respiración del ecosistema

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
Los ecosistemas continuamente intercambian carbono y vapor de agua con la atmósfera a través de procesos ecosistémicos. En general, la producción neta del ecosistema refleja el balance entre los flujos de entrada de carbono por productividad y la liberación por la respiración ecosistémica. Evaluar esta producción a lo largo de los cambios producidos por la sucesión ecológica secundaria representa un desafío muy grande. En este contexto, la técnica de covarianza de vórtices está siendo ampliamente utilizada para cuantificar flujos ecosistémicos de manera continua. En el bosque tropical seco se han establecido varios sitios de monitoreo utilizando esta técnica para conocer la funcionalidad del ecosistema durante la sucesión ecológica. Esta información puede contribuir a la toma de decisiones en términos de conservación y administración de servicios ecosistémicos, así como para alimentar modelos para predecir la respuesta de este ecosistema estacional seco al cambio climático. Los ecosistemas tropicales secos son de gran relevancia para el ciclo del carbono debido a su considerable extensión y productividad. El reto de estudiar estos ecosistemas radica en que su dinámica de producción de carbono está acoplada principalmente a la disponibilidad estacional de agua. De manera que, el objetivo de este trabajo fue actualizar la información de las interacciones biosfera-atmósfera utilizando la técnica de covarianza de vórtices particularmente en bosques tropicales secos, con el fin de resaltar el efecto de la sucesión ecológica en la dinámica del carbono en estos bosques. Asimismo, se muestra y resalta la importancia local y global de este tipo de sistemas de monitoreo funcional de ecosistemas en México.
Citas
- Allen, K., Dupuy, J. M., Gei, M. G., Hulshof, C., Medvigy, D., Pizano, C., Salgado-Negret, B., Smith, C. M., Trierweiler, A., Van Bloem, S. J., Waring, B. G., Xu, X., & Powers, J. S., (2017). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?. Environmental Research Letters, 12(2), 023001. https://doi.org/10.1088/1748-9326/aa5968
- Álvarez‐Yépiz, J. C. (2020). Restoration ecology in the Anthropocene: Learning from responses of tropical forests to extreme disturbance events. Restoration Ecology, 28(2), 271-276. https://doi.org/10.1111/rec.13117
- Álvarez-Yépiz, J. C., Martínez-Yrízar, A., Búrquez, A., & Lindquist, C. (2008). Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in northwestern Mexico. Forest Ecology and Management, 256(3), 355-366. https://doi.org/10.1016/j.foreco.2008.04.049
- Álvarez-Yépiz, J. C., Martínez-Yrízar, A., & Fredericksen, T. S. (2018). Special Issue: Resilience of tropical dry forests to extreme disturbance events. Forest Ecology and Management, 426, 1-6. https://doi.org/10.1016/j.foreco.2018.05.067
- Amiro, B. D., Barr, A. G., Black, T. A., & Iwashita, H. (2006). Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agricultural and Forest Meteorology, 136(3-4), 237-251. https://doi.org/10.1016/j.agrformet.2004.11.012
- Aubinet, M., Vesala, T., & Papale, D. (2012). Eddy covariance: a practical guide to measurement and data analysis. Springer Science – Business Media. https://doi.org/10.1007/978-94-007-2351-1
- Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230-234. https://doi.org/10.1126/science.aam5962
- Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479-492. https://doi.org/10.1046/j.1365-2486.2003.00629.x
- Baldocchi, D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the state and future of the eddy covariance method. Global change biology, 20(12), 3600-3609. https://doi.org/10.1111/gcb.12649
- Baldocchi, D. D. (2020). How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology, 26(1), 242-260. https://doi.org/10.1111/gcb.14807
- Bazzaz, F. A. (1996). Plants in changing environments: linking physiological, population, and community ecology. Cambridge University Press.
- Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Papale, D., Soussana, J. F., Ammann, C., Buchmann, N., Frank, D., Gianelle, D., Janssens, I. A., Knohl, A., Köstner, B., Moors, E., Roupsard, O., Verbeeck, H., Vesala, T., Williams, C. A., & Wohlfahrt, G. (2009). Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 23(2), 1-13. https://doi.org/10.1029/2008GB003233
- Biederman, J. A., Scott, R. L., Bell, T. W., Bowling, D. R., Dore, S., Garatuza-Payan, J., Kolb, T. E., Krishnan, P., Krofcheck, D., Litvak, M. E., Maurer, G. E., Meyers, T. P., Oechel, W. C., Papuga, S. A., Ponce-Campos, G. E., Rodriguez, J. C., Smith, W. K., Vargas, R., Watts, C. J, …, Goulden, M. L. (2017). CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Global Change Biology, 23(10), 4204–4221. https://doi.org/10.1111/gcb.13686
- Bojórquez, A., Álvarez‐Yépiz, J. C., Búrquez, A., & Martínez‐Yrízar, A. (2019). Understanding and predicting frost‐induced tropical tree mortality patterns. Global Change Biology, 25(11), 3817-3828. https://doi.org/10.1111/gcb.14775
- Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444-1449. https://doi.org/10.1126/science.1155121
- Brienen, R. J., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez-Martinez, R., Alexiades, M., Álvarez-Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragaõ, L. E., Araujo-Murakami, A., Arets, E. J., Arroyo, L., …, Zagt, R. J. (2015). Long-term decline of the Amazon carbon sink. Nature, 519(7543), 344-348. https://doi.org/10.1038/nature14283
- Brogna, D., Vincke, C., Brostaux, Y., Soyeurt, H., Dufrêne, M., & Dendoncker, N. (2017). How does forest cover impact water flows and ecosystem services? Insights from “real-life” catchments in Wallonia (Belgium). Ecological Indicators, 72, 675-685. https://doi.org/10.1016/j.ecolind.2016.08.011
- Bullock, S. H., Mooney, H. A., & Medina, E. (1995). Seasonally dry tropical forests. Cambridge University Press.
- Burba, G., & Anderson, D. (2010). Eddy Covariance Flux Measurements. Ecological Applications, 18(6), 1368-1378. https://doi.org/10.1890/06-1336.1
- Campo, J. (2016). Shift from ecosystem P to N limitation at precipitation gradient in tropical dry forests at Yucatan, Mexico. Environmental Research Letters, 11(9), 095006. https://doi.org/10.1088/1748-9326/11/9/095006
- Castro, S. M., Sanchez-Azofeifa, G. A., & Sato, H. (2018). Effect of drought on productivity in a Costa Rican tropical dry forest. Environmental Research. Letters, 13, 045001. Retrieved from https://doi.org/10.1088/1748-9326/aaacbc
- Carey, E. V., Sala, A., Keane, R., & Callaway, R. M. (2001). Are old forest underestimated as global carbon sinks?. Global Change Biology, 7(4), 339-344. https://doi.org/10.1046/j.1365-2486.2001.00418.x
- Carvalho-Santos, C., Honrado, J. P., & Hein, L. (2014). Hydrological services and the role of forests: Conceptualization and indicator-based analysis with an illustration at a regional scale. Ecological Complexity, 20, 69-80. https://doi.org/10.1016/j.ecocom.2014.09.001
- Chapin, F. S., Woodwell, G. M., Randerson, J. T., Lovett, G. M., Rastetter, E. B., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo, J. M., Mooney, H. A., …, Schulze, E. D. (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10021-005-0105-7
- Chapin, F. S., Matson, P. A., & Vitousek, P. M. (2011). Principles of Terrestrial Ecosystem Ecology (2a ed.). Springer.
- Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M., Bongers, F., Zambrano, A. M., Aide, T. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. , Craven, D., Almeida-Cortez, J. S., Cabral, G. A., de Jong, B., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., …, Poorter, L. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5). E1501639. https://doi.org/10.1126/sciadv.1501639
- Collalti, A., Tjoelker, M. G., Hoch, G., Mäkelä, A., Guidolotti, G., Heskel, M., Petit, G., Ryan, M. G., Battipaglia, G., Matteucci, G., & Prentice, I. C. (2020). Plant respiration: controlled by photosynthesis or biomass?. Global Change Biology, 26(3), 1739-1753. https://doi.org/10.1111/gcb.14857
- Cotler, H., Durán, E., & Siebe, C. (2002). Historia Natural de Chamela. En F. A. Noguera, J. H. Vera Rivera, & A. N. Garcia Aldrede (Eds.), Caracterización morfo-edafológica y calidad de sitio de un bosque tropical caducifolio (pp. 17−79). Universidad Nacional Autónoma de México.
- Curtis, P. S., & Gough, C. M. (2018). Forest aging, disturbance and the carbon cycle. New Phytologist, 219(4), 1188-1193. https://doi.org/10.1111/nph.15227
- Deb Burman, P. K., Sarma, D., Chakraborty, S., Karipot, A., & Jain, A. K. (2020). The effect of Indian summer monsoon on the seasonal variation of carbon sequestration by a forest ecosystem over North-East India. SN Applied Sciences, 2(2), 1–16. https://doi.org/10.1007/s42452-019-1934-x
- Delgado-Balbuena, J., Yépez, E. A., Paz-Pellat, P., Ángeles-Pérez, G., Alvarado-Barrientos, M. S., Bullock, S. H., Castellanos, A. E., Arredondo, T., Figueroa-Espinoza, B., Garatuza-Payán, J., González-del Castillo, E., González-Sosa, E., Maya-Delgado, Y., Rodríguez, J. C., Vargas, R., Vivoni, E. R., & Watts, C. J. (2019). Flujos Verticales de Carbono en Ecosistemas Terrestres. En F. Paz-Pellat, J. M. Hernández-Ayón, R. Sosa-Ávalos, & A. S. Velázquez-Rodríguez (Eds.), Estado del ciclo del carbono: agenda azul y verde (pp. 605-625). Programa Mexicano del Carbono.
- Dirzo, R., Young, H. S., Mooney, H. A., & Ceballos, G. (2011). Seasonally dry tropical forests: ecology and conservation. Island Press.
- Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., van Noordwijk, M., Creed, I. F., Pokorny, J., Gaveau, D., Spracklen, D. V., Bargués-Tobella, A., Ilstedt, U., Teuling, A. J., Gebreyohannis-Gebrehiwot, S., Sands, D. C., Muys, B., Verbist, B., …, Sullivan, C. A. (2017). Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43, 51-61. https://doi.org/10.1016/j.gloenvcha.2017.01.002
- Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO] (2006). World agriculture: towards 2030/2050. Prospects for food, nutrition, agriculture and major commodity groups. FAO, p.78.
- Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K., (2005). Global Consequences of Land Use. Science, 309(5734), 570-574. https://doi.org/10.1126/science.1111772
- García, A. G., Di Bella, C. M., Houspanossian, J., Magliano, P. N., Jobbágy, E. G., Posse, G., Fernández, R. J., & Nosetto, M. D. (2017). Patterns and controls of carbon dioxide and water vapor fluxes in a dry forest of central Argentina. Agricultural and Forest Meteorology, 247, 520–532. https://doi.org/10.1016/j.agrformet.2017.08.015
- García-Oliva, F., & Jaramillo, V. J. (2011). Impacts of anthropogenic transformation of seasonally dry tropical forest on ecosystems biogeochemical processes. En R. Dirzo, H. S. Young, H. A. Mooney & G. Ceballos (Eds.), Seasonally dry tropical forest. Ecology and conservation (pp. 159-172). Island Publish. https://doi.org/10.5822/978-1-61091-021-7
- Gentine, P., Green, J., Guerin, M., Humphrey, V., Seneviratne, S. I., Zhang, Y., & Zhou, S. (2019). Coupling between the terrestrial carbon and water cycles - a review. Environmental Research Letters, 14(8), 083003. https://doi.org/10.1088/1748-9326/ab22d6
- Gonzalez del Castillo, E., Sanchez-Azofeifa, A., Paw U., K. T., Gamon, J. A., & Quesada, M. (2018). Integrating proximal broad-band vegetation indices and carbon fluxes to model gross primary productivity in a tropical dry forest. Environmental Research Letters, 13(6). 065017. https://doi.org/10.1088/1748-9326/aac3f0
- Goulden, M. L., Mcmillan, A., Winston, G. C., Rocha, A. V., Manies, K. L., Harden, J. W., & Bond-Lamberty, B. P. (2010). Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 17(2), 855-871. https://doi.org/10.1111/j.1365-2486.2010.02274.x
- Gurevitch, J., Scheiner, S. M., & Fox, G. A. (2002). The ecology of plants . Sinauer Associates.
- Harmon, M. E., Bond-Lamberty, B., Tang, J., & Vargas, R. (2011). Heterotrophic respiration in disturbed forests: A review with examples from North America. Journal of Geophysical Research-Biogeosciences, 116(G4), G00K04. https://doi.org/10.1029/2010JG001495
- Hutyra, L. R., Munger, J. W., Saleska, S. R., Gottlieb, E., Daube, B. C., Dunn, A. L., Amaral, D. F., Camargo, P. B. de, & Wofsy, S. C. (2007). Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. Journal of Geophysical Research: Biogeosciences, 112(3), 1–16. https://doi.org/10.1029/2006JG000365
- Jaramillo, V., García-Oliva, F., & Martínez-Yrízar, A. (2010). La selva seca y las perturbaciones antrópicas en un contexto funcional. En: G. Ceballos, L. Martínez, A. García, E. Espinoza, J. Bezaury-Creel, & R. Dirzo (Eds.), Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México (pp. 235-250). Fondo de Cultura Económica - Conabio.
- Jaramillo, V. J., Martínez-Yrízar, A., & Sanford, R. L. (2011). Primary productivity and biogeochemistry of seasonally dry tropical forests. En R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally dry tropical forest. Ecology and conservation (pp.109–128). Island Publish Co. https://doi.org/10.5822/978-1-61091-021-7
- Jaramillo, V. J., & Sanford, R. L. (1995) Nutrient cycling in tropical deciduous forest. En S. H. Bullock, H. A. Mooney, & E. A. Medina (Eds.), Season ally dry tropical forests (pp. 347-361). Cambridge University Press.
- Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., Sun, Y., Bollenbacher, A., & Meijer, H. (2017). Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proceedings of the National Academy of Sciences, 114(39), 10361-10366. https://doi.org/10.1073/pnas.1619240114
- Keenan, T. F., & Williams, C. A. (2018). The terrestrial carbon sink. Annual Review of Environment and Resources, 43, 219-243. https://doi.org/10.1146/annurev-environ-102017-030204
- Kira, T., & Shidei, T. (1967) Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Japanese Journal of Ecology, 17(2), 70-87. https://doi.org/10.18960/seitai.17.2_70
- Lasky, J. R., Uriarte, M., & Muscarella, R. (2016). Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: Effects of rainfall seasonality. Environmental Research Letters, 11(11), 115003. https://doi.org/10.1088/1748-9326/11/11/115003
- Lavergne, A., Graven, H., De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., & Prentice, I. C. (2019). Observed and modelled historical trends in the water use efficiency of plants and ecosystems. Global Change Biology, 25(7), 2242-2257. https://doi.org/10.1111/gcb.14634
- Lele, S. (2009). Watershed services of tropical forests: from hydrology to economic valuation to integrated analysis. Current Opinion in Environmental Sustainability. 1(2), 148-155. https://doi.org/10.1016/j.cosust.2009.10.007
- Le Quéré, C. L., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, B. R., Boden, T. A., Tans, P. P., Andrews, A., Arora, V. K., Bakker, D. C., Barbero, L., Becker, M., Betts, R. A., Bopp, L., …, Zhu, D., (2018). Global carbon budget 2017. Earth System Science Data, 10(1), 405-448. https://doi.org/10.5194/essd-10-405-2018
- Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349(6250), 827-832. https://doi.org/10.1126/science.aaa9932
- Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T., & Laurance, W. F. (2009). Changing Ecology of Tropical Forests: Evidence and Drivers. Annual Review of Ecology, Evolution, and Systematics, 40(1), 529-549. https://doi.org/10.1146/annurev.ecolsys.39.110707.173345
- Linares-Palomino, R., Oliveira-Filho, A. T., & Pennington, R. T. (2011). Neotropical seasonally dry forests: Diversity, endemism, and biogeography of woody plants. En R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally dry tropical forest, Ecology and conservation (pp. 3-21). Island Publish Co. https://doi.org/10.5822/978-1-61091-021-7
- de Lucia, E. H., Drake, J. E., Thomas, R. B., & Gonzalez-Meler, M. (2007). Forest carbon use efficiency: Is respiration a constant fraction of gross primary production?. Global Change Biology, 13(6), 1157-1167. https://doi.org/10.1111/j.1365-2486.2007.01365.x
- Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., …, Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12), 2509-2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x
- Luyssaert, S., Schulze, E. D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., Ciais, P., Grace, J. (2008). Old-growth forests as global carbon sinks. Nature, 455(7210), 213-215. https://doi.org/10.1038/nature07276
- Maass, M., & Burgos, A. (2011). Water Dynamics at the Ecosystem Level. En R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally dry tropical forest. Ecology and conservation (pp. 141-156). Island Publish Co. https://doi.org/10.5822/978-1-61091-021-7
- Martínez-Yrízar, A., Álvarez-Sánchez, J., & Maass, M. (2017). Análisis y perspectivas del estudio de los ecosistemas terrestres de México: dinámica hidrológica y flujos de nitrógeno y fósforo. Revista Mexicana de Biodiversidad, 88, 27-41. https://doi.org/10.1016/j.rmb.2017.10.008
- Martínez-Yrízar, A., Jaramillo, V. J., Maass, M., Búrquez, A., Parker, G., Álvarez-Yépiz, J. C.,Araiza, S., Verduzco, A., & Sarukhán, J. (2018). Resilience of tropical dry forest productivity to two hurricanes of different intensity in western Mexico. Forest Ecology and Management, 426, 53-60. https://doi.org/10.1016/j.foreco.2018.02.024
- Martínez-Yrízar, A., & Sarukhán, J. (1990). Litterfall patterns in a tropical deciduous forest in Mexico over a five-year period. Journal of Tropical Ecology, 6(4), 433-444. https://doi.org/10.1017/s0266467400004831
- Marín‐Spiotta, E., & Sharma, S. (2013). Carbon storage in successional and plantation forest soils: a tropical analysis. Global Ecology and Biogeography, 22(1), 105-117. https://doi.org/10.1111/j.1466-8238.2012.00788.x
- McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A., Seidl, R., …, Xu, C., (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368, 6494. https://doi.org/10.1126/science.aaz9463
- Mendes, K. R., Campos, S., da Silva, L. L., Mutti, P. R., Ferreira, R. R., Medeiros, S. S., Perez-Marin, A. M., Marques, T. V., Ramos, T. M., de Lima Vieira, M. M., Oliveira, C. P., Gonçalves, W. A,. Costa, G. B., Antonio, A. C., Menezes, R. S., Bezerra, B. G., & Santos e Silva, C. M. (2020). Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Scientific Reports, 10(1), 9454. https://doi.org/10.1038/s41598-020-66415-w
- Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., & Moreno, J. (2009). Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 113(10), 2037-2051. https://doi.org/10.1016/j.rse.2009.05.003
- Mitchard, E. T.(2018). The tropical forest carbon cycle and climate change. Nature, 559(7715), 527-534. https://doi.org/10.1038/s41586-018-0300-2
- Monson, R., & Baldocchi, D. (2014). Terrestrial biosphere-atmosphere fluxes. Cambridge University Press. https://doi.org/10.1017/CBO9781139629218
- Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17(1), 67-88. https://doi.org/10.1146/annurev.es.17.110186.000435
- Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., & Phillips, R. P. (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 6(11), 1023-1027. https://doi.org/10.1038/nclimate3114
- Odum, E. P. (1969). The strategy of ecosystem development. Science, 164(3877), 262-270. https://doi.org/10.1126/science.164.3877.262
- Ortiz-Reyes, A. D., Valdez-Lazalde, J. R., Angeles-Perez, G., los Santos-Posadas, D., Héctor, M., Schneider, L., ..., Peduzzi, A. (2019). LiDAR data transects a sampling strategy to estimate aboveground biomass in forest areas. Madera y Bosques, 25(3), e2531872. https://doi.org/10.21829/myb.2019.2531872
- Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1201609
- Pan, Y., Birdsey, R. A., Phillips, O. L., & Jackson, R. B. (2013). The structure, distribution, and biomass of the world's forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593-622. https://doi.org/10.1146/annurev-ecolsys-110512-135914
- Peñuelas, J., Ciais, P., Canadell, J. G., Janssens, I. A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Pios, S., Vautard, R., & Sardans, J. (2017). Shifting from a fertilization- dominated to a warming-dominated period. Nature Ecology & Evolution, 1, 1438-1445. https://doi.org/10.1038/s41559-017-0274-8
- Pennington, R. T., Prado, D. E., & Pendry, C. A. (2000). Neotropical seasonally dry forests and quaternary vegetation changes. Journal of Biogeography, 27(2), 261-273. https://www.jstor.org/stable/2656258
- Perez-Ruiz, E. R., Garatuza-Payan, J., Watts, C. J., Rodriguez, J. C., Yepez, E. A., & Scott, R. L. (2010). Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS). Journal of Arid Environments, 74(5), 556-563. https://doi.org/10.1016/j.jaridenv.2009.09.029
- Portillo-Quintero, C. A., & Sánchez-Azofeifa, G. A. (2010). Extent and conservation of tropical dry forests in the Americas. Biological Conservation, 143(1), 144-155. https://doi.org/10.1016/j.biocon.2009.09.020
- Powers, J. S., & Marín-Spiotta, E. (2017). Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Review of Ecology, Evolution, and Systematics, 48(1), 497-519. https://doi.org/10.1146/annurev-ecolsys-110316-022944
- Quesada, M., Sanchez-Azofeifa, G. A., Alvarez-Anorve, M., Stoner, K. E., Avila-Cabadilla, L., Calvo-Alvarado, J., Castillo, A., Espíritu-Santo, M. M., Fagundes, M., Fernandes, G. W., Gamon, J., Lopezaraiza-Mikel, M., Lawrence, D., Patricia, L., Morellato, C., Powers, J. S., Neves, F. S., Rosas-Guerrero, V., Sayago, R., & Sanchez-Montoya, G. (2009). Succession and management of tropical dry forests in the Americas: Review and new perspectives. Forest Ecology and Management, 258(6), 1014-1024. https://doi.org/10.1016/j.foreco.2009.06.023
- Quijas, S., Boit, A., Thonicke, K., Murray-Tortarolo, G., Mwampamba, T., Skutsch, M., Simoes, M., Ascarrunz, N., Peña-Claros, M., Jones, L., Arets, E., Jaramillo, V. J., Lazos, E., Toledo, M., Martorano, L. G., Ferraz, R., & Balvanera, P. (2019). Modelling carbon stock and carbon sequestration ecosystem services for policy design: a comprehensive approach using a dynamic vegetation model. Ecosystems and People, 15(1), 42-60. https://doi.org/10.1080/26395908.2018.1542413
- Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., Van Der Velde, M., Vicca, S., Walz, A., & Wattenbach, M., (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287-295. https://doi.org/10.1038/nature12350
- Reichstein, M., & Carvalhais, N. (2019). Aspects of forest biomass in the earth system: its role and major unknowns. Surveys in Geophysics, 40(4), 693-707. https://doi.org/10.1007/s10712-019-09551-x
- Robles-Morua, A., Che, D., Mayer, A. S., & Vivoni, E. R. (2015), Hydrologic assessment of proposed reservoirs in the Sonora River Basin, Mexico, under historical and future climate scenarios. Hydrological Sciences Journal, 60(1), 50-66.
- Rodda, S. R., Thumaty, K. C., Praveen, M. S., Jha, C. S., & Dadhwal, V. K. (2021). Multi-year eddy covariance measurements of net ecosystem exchange in tropical dry deciduous forest of India. Agricultural and Forest Meteorology, 301-302. 108351. https://doi.org/10.1016/j.agrformet.2021.108351
- Rojas‐Robles, N. E., Garatuza‐Payán, J., Álvarez‐Yépiz, J. C., Sánchez‐Mejía, Z. M., Vargas, R., & Yépez, E. A. (2020). Environmental controls on carbon and water fluxes in an old‐growth tropical dry forest. Journal of Geophysical Research: Biogeosciences, e2020JG005666. https://doi.org/10.1029/2020JG005666
- Ryan, M. G., Binkley, D., & Fownes, J. H. (1997). Age‐related decline in forest productivity: Pattern and process. Advances in Ecological Research, 27, 213-262. https://doi.org/10.1016/S0065-2504(08)60009-4
- Sánchez‐Azofeifa, G. A., Quesada, M., Rodríguez, J. P., Nassar, J. M., Stoner, K. E., Castillo, A., Garvin, T., Zent, E. L., Calvo‐Alvarado, J. C., Kalacska, M. E., Fajardo, L., Gamon, J. A. & Cuevas‐Reyes, P. (2005), Research Priorities for Neotropical Dry Forests1. Biotropica, 37(4) 477-485. https://doi.org/10.1046/j.0950-091x.2001.00153.x-i1
- Santini, N. S., Villarruel-Arroyo, A., Adame, M. F., Lovelock, C. E., Nolan, R. H., Gálvez-Reyes, N., González, E. J., Olivares-Resendiz, B., Mastretta-Yanes, A., & Piñero, D. (2020). Organic carbon stocks of Mexican montane habitats: variation among vegetation types and land-use. Frontiers in Environmental Science, 8, 581476. https://doi.org/10.3389/fenvs.2020.581476
- Schimel, D., Stephens, B. B., & Fisher, J. B. (2015). Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences, 112(2), 436-441. https://doi.org/10.1073/pnas.1407302112
- Schimel, D. et al. (2019). Flux towers in the sky: global ecology from space. New Phytologyst, 224(2), 570-584. https://doi.org/10.1111/nph.15934
- Silva, P. F., Lima, J. R. de S., Antonino, A. C. D., Souza, R., de Souza, E. S., Silva, J. R. I., & Alves, E. M. (2017). Seasonal patterns of carbon dioxide, water and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil. Journal of Arid Environments, 147, 71–82. https://doi.org/10.1016/j.jaridenv.2017.09.003
- Souza, L. S. B. de, Moura, M. S. B. de, Sediyama, G. C., & Silva, T. G. F. da. (2017). Carbon exchange in a caatinga area during an unusually drought year. Agrometeoros, 25(1), 37–45. http://dx.doi.org/10.31062/agrom.v25i1.26265
- Tang, J., Luyssaert, S., Richardson, A. D., Kutsch, W., & Janssens, I. A. (2014). Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proceedings of the National Academy of Sciences, 111(24), 8856–8860. https://doi.org/10.1073/pnas.1320761111
- Tarin-Terrazas, T., Alvarado-Barrientos, S., Cueva-Rodríguez, A., Hinojo-Hinojo, C., González del Castillo, E., Sánchez-Mejía, Z., Villarreal-Rodríguez, S., & Yépez-González, E. A. (2020) MexFlux: sinergias para diseñar, evaluar e informar soluciones climáticas naturales. Elementos para Políticas Públicas, 4(2), 99-118.
- Tarin, T., Yepez, E. A., Garatuza-Payan, J., Rodriguez, J. C., Méndez-Barroso, L. A., Watts, C. J., & Vivoni, E. R. (2020). Evapotranspiration flux partitioning at a multi-species shrubland with stable isotopes of soil, plant and atmosphere waterpools. Atmósfera, 33(4), 319-335. https://doi.org/10.20937/ATM.52710
- Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B., & White, J. W. (2011). Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment, 9(1), 9-17. https://doi.org/10.1890/100047
- Uuh‐Sonda, J. M., Figueroa‐Espinoza, B., Gutiérrez‐Jurado, H. A., & Méndez‐Barroso, L. A. (2022). Ecosystem productivity and evapotranspiration dynamics of a seasonally dry tropical forest of the Yucatan Peninsula. Journal of Geophysical Research, Biogeosciences, 127(1), e2019JG005629. https://doi.org/10.1029/2019JG005629
- Villarreal, S., Guevara, M., Alcaraz-Segura, D., & Vargas, R. (2019). Optimizing an Environmental Observatory Network Design Using Publicly Available Data. Journal of Geophysical Research: Biogeosciences, 124(7), 1812-1826. https://doi.org/10.1029/2018JG004714
- Vargas, R., Allen, M. F., & Allen, E. B. (2008). Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Global Change Biology, 14(1),109-124. https://doi.org/10.1111/j.1365-2486.2007.01462.x
- Vargas, R., Yépez, E. A., Andrade, J. L., Ángeles, G., Arredondo, T., Castellanos, A., Delgado, J., Garatuza-Payan, J., González del Castillo, E., Oechel, W., Sánchez-Azofeifa, A., Velasco, E., Vivoni, E, & Watts, C. (2013). Progress and opportunities for monitoring greenhouse gases fluxes in Mexican ecosystems: the MexFlux network. Atmósfera, 26(3), 325-336.
- Verduzco, V. S., Garatuza-Payán, J., Yépez, E. A., Watts, C. J., Rodríguez, J. C., Robles-Morua, A., & Vivoni, E. R. (2015). Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico. Geophysical Research: Biogeosciences, 120(10), 2081-2094. https://doi.org/10.1002/2015JG003119
- Wang, S., Zhang, Y., Ju, W., Chen, J. M., & Ciais, P. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370(6522), 1295-1300. https://doi.org/10.1126/science.abb7772
- Waring, R. H., Landsberg, J., & Williams, M. (1998) Net primary production of forests: a constant fraction of gross primary production?. Tree Physiology, 18(2), 129-134. https://doi.org/10.1093/treephys/18.2.129
- White, P.S., & Pickett, T. A. (1985). Natural disturbances and patch dynamics, En S. T. A. Pickett, & P. S. White (Eds.), The ecology of natural disturbance and patch dynamics (pp. 3-13). Academic Press.
- Yepez, E. A., Scott, R. L., Cable, W. L., & Williams, D. G. (2007). Intraseasonal variation in water and carbon dioxide flux components in a semiarid riparian woodland. Ecosystems, 10(7), 1100-1115. https://doi.org/10.1007/s10021-007-9079-y
- Yoda, K. (1967). Comparative ecological studies on three main types of forest vegetation in Thailand III. Community respiration. Nature and Life in Southeast Asia, 5, 83-148.
- Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Youngryel, R., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J., Qin, Z., Quine, T., …, Yang, S. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5(8), eaax1396. https://doi.org/10.1126/sciadv.aax1396
- Zhu, K. (2020). Understanding forest dynamics by integrating age and environmental change. New Phytologist, 228(6), 1728-1733. https://doi.org/10.1111/nph.16412