Producción neta del ecosistema durante la sucesión ecológica secundaria: lecciones desde el bosque tropical seco

Autores/as

DOI:

https://doi.org/10.21829/myb.2023.2912368

Palabras clave:

covarianza de vórtices y flujos, evapotranspiración, intercambio neto de carbono, productividad bruta del ecosistema, respiración del ecosistema

Resumen

Los ecosistemas continuamente intercambian carbono y vapor de agua con la atmósfera a través de procesos ecosistémicos. En general, la producción neta del ecosistema refleja el balance entre los flujos de entrada de carbono por productividad y la liberación por la respiración ecosistémica. Evaluar esta producción a lo largo de los cambios producidos por la sucesión ecológica secundaria representa un desafío muy grande. En este contexto, la técnica de covarianza de vórtices está siendo ampliamente utilizada para cuantificar flujos ecosistémicos de manera continua. En el bosque tropical seco se han establecido varios sitios de monitoreo utilizando esta técnica para conocer la funcionalidad del ecosistema durante la sucesión ecológica. Esta información puede contribuir a la toma de decisiones en términos de conservación y administración de servicios ecosistémicos, así como para alimentar modelos para predecir la respuesta de este ecosistema estacional seco al cambio climático. Los ecosistemas tropicales secos son de gran relevancia para el ciclo del carbono debido a su considerable extensión y productividad. El reto de estudiar estos ecosistemas radica en que su dinámica de producción de carbono está acoplada principalmente a la disponibilidad estacional de agua. De manera que, el objetivo de este trabajo fue actualizar la información de las interacciones biosfera-atmósfera utilizando la técnica de covarianza de vórtices particularmente en bosques tropicales secos, con el fin de resaltar el efecto de la sucesión ecológica en la dinámica del carbono en estos bosques. Asimismo, se muestra y resalta la importancia local y global de este tipo de sistemas de monitoreo funcional de ecosistemas en México.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Nidia E. Rojas-Robles,

Instituto Tecnológico de Sonora

Departamento de Ciencias del Agua y Medio Ambiente

Enrico A. Yépez,

Instituto Tecnológico de Sonora/Laboratorio Nacional de Geoquímica y Mineralogía

Instituto Tecnológico de Sonora

Departamento de Ciencias del Agua y Medio Ambiente

 

Laboratorio Nacional de Geoquímica y Mineralogía

Sede Regional Sur de Sonora. Ciudad Obregón, Sonora, México

Juan C. Álvarez-Yépiz,

Instituto Tecnológico de Sonora

Departamento de Ciencias del Agua y Medio Ambiente

Zulia M. Sanchez-Mejía,

Instituto Tecnológico de Sonora

Departamento de Ciencias del Agua y Medio Ambiente

Jaime Garatuza-Payan,

Instituto Tecnológico de Sonora/Laboratorio Nacional de Geoquímica y Mineralogía

Instituto Tecnológico de Sonora

Departamento de Ciencias del Agua y Medio Ambiente

 

Laboratorio Nacional de Geoquímica y Mineralogía

Sede Regional Sur de Sonora. Ciudad Obregón, Sonora, México

Miguel A. Rivera,

Instituto Tecnológico de Sonora

Departamento de Ciencias del Agua y Medio Ambiente

Citas

Allen, K., Dupuy, J. M., Gei, M. G., Hulshof, C., Medvigy, D., Pizano, C., Salgado-Negret, B., Smith, C. M., Trierweiler, A., Van Bloem, S. J., Waring, B. G., Xu, X., & Powers, J. S., (2017). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?. Environmental Research Letters, 12(2), 023001. https://doi.org/10.1088/1748-9326/aa5968 DOI: https://doi.org/10.1088/1748-9326/aa5968

Álvarez‐Yépiz, J. C. (2020). Restoration ecology in the Anthropocene: Learning from responses of tropical forests to extreme disturbance events. Restoration Ecology, 28(2), 271-276. https://doi.org/10.1111/rec.13117 DOI: https://doi.org/10.1111/rec.13117

Álvarez-Yépiz, J. C., Martínez-Yrízar, A., Búrquez, A., & Lindquist, C. (2008). Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in northwestern Mexico. Forest Ecology and Management, 256(3), 355-366. https://doi.org/10.1016/j.foreco.2008.04.049 DOI: https://doi.org/10.1016/j.foreco.2008.04.049

Álvarez-Yépiz, J. C., Martínez-Yrízar, A., & Fredericksen, T. S. (2018). Special Issue: Resilience of tropical dry forests to extreme disturbance events. Forest Ecology and Management, 426, 1-6. https://doi.org/10.1016/j.foreco.2018.05.067 DOI: https://doi.org/10.1016/j.foreco.2018.05.067

Amiro, B. D., Barr, A. G., Black, T. A., & Iwashita, H. (2006). Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agricultural and Forest Meteorology, 136(3-4), 237-251. https://doi.org/10.1016/j.agrformet.2004.11.012 DOI: https://doi.org/10.1016/j.agrformet.2004.11.012

Aubinet, M., Vesala, T., & Papale, D. (2012). Eddy covariance: a practical guide to measurement and data analysis. Springer Science – Business Media. https://doi.org/10.1007/978-94-007-2351-1 DOI: https://doi.org/10.1007/978-94-007-2351-1

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230-234. https://doi.org/10.1126/science.aam5962 DOI: https://doi.org/10.1126/science.aam5962

Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479-492. https://doi.org/10.1046/j.1365-2486.2003.00629.x DOI: https://doi.org/10.1046/j.1365-2486.2003.00629.x

Baldocchi, D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the state and future of the eddy covariance method. Global change biology, 20(12), 3600-3609. https://doi.org/10.1111/gcb.12649 DOI: https://doi.org/10.1111/gcb.12649

Baldocchi, D. D. (2020). How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology, 26(1), 242-260. https://doi.org/10.1111/gcb.14807 DOI: https://doi.org/10.1111/gcb.14807

Bazzaz, F. A. (1996). Plants in changing environments: linking physiological, population, and community ecology. Cambridge University Press.

Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Papale, D., Soussana, J. F., Ammann, C., Buchmann, N., Frank, D., Gianelle, D., Janssens, I. A., Knohl, A., Köstner, B., Moors, E., Roupsard, O., Verbeeck, H., Vesala, T., Williams, C. A., & Wohlfahrt, G. (2009). Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 23(2), 1-13. https://doi.org/10.1029/2008GB003233 DOI: https://doi.org/10.1029/2008GB003233

Biederman, J. A., Scott, R. L., Bell, T. W., Bowling, D. R., Dore, S., Garatuza-Payan, J., Kolb, T. E., Krishnan, P., Krofcheck, D., Litvak, M. E., Maurer, G. E., Meyers, T. P., Oechel, W. C., Papuga, S. A., Ponce-Campos, G. E., Rodriguez, J. C., Smith, W. K., Vargas, R., Watts, C. J, …, Goulden, M. L. (2017). CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Global Change Biology, 23(10), 4204–4221. https://doi.org/10.1111/gcb.13686 DOI: https://doi.org/10.1111/gcb.13686

Bojórquez, A., Álvarez‐Yépiz, J. C., Búrquez, A., & Martínez‐Yrízar, A. (2019). Understanding and predicting frost‐induced tropical tree mortality patterns. Global Change Biology, 25(11), 3817-3828. https://doi.org/10.1111/gcb.14775 DOI: https://doi.org/10.1111/gcb.14775

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444-1449. https://doi.org/10.1126/science.1155121 DOI: https://doi.org/10.1126/science.1155121

Brienen, R. J., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez-Martinez, R., Alexiades, M., Álvarez-Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragaõ, L. E., Araujo-Murakami, A., Arets, E. J., Arroyo, L., …, Zagt, R. J. (2015). Long-term decline of the Amazon carbon sink. Nature, 519(7543), 344-348. https://doi.org/10.1038/nature14283 DOI: https://doi.org/10.1038/nature14283

Brogna, D., Vincke, C., Brostaux, Y., Soyeurt, H., Dufrêne, M., & Dendoncker, N. (2017). How does forest cover impact water flows and ecosystem services? Insights from “real-life” catchments in Wallonia (Belgium). Ecological Indicators, 72, 675-685. https://doi.org/10.1016/j.ecolind.2016.08.011 DOI: https://doi.org/10.1016/j.ecolind.2016.08.011

Bullock, S. H., Mooney, H. A., & Medina, E. (1995). Seasonally dry tropical forests. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511753398

Burba, G., & Anderson, D. (2010). Eddy Covariance Flux Measurements. Ecological Applications, 18(6), 1368-1378. https://doi.org/10.1890/06-1336.1 DOI: https://doi.org/10.1890/06-1336.1

Campo, J. (2016). Shift from ecosystem P to N limitation at precipitation gradient in tropical dry forests at Yucatan, Mexico. Environmental Research Letters, 11(9), 095006. https://doi.org/10.1088/1748-9326/11/9/095006 DOI: https://doi.org/10.1088/1748-9326/11/9/095006

Castro, S. M., Sanchez-Azofeifa, G. A., & Sato, H. (2018). Effect of drought on productivity in a Costa Rican tropical dry forest. Environmental Research. Letters, 13, 045001. Retrieved from https://doi.org/10.1088/1748-9326/aaacbc DOI: https://doi.org/10.1088/1748-9326/aaacbc

Carey, E. V., Sala, A., Keane, R., & Callaway, R. M. (2001). Are old forest underestimated as global carbon sinks?. Global Change Biology, 7(4), 339-344. https://doi.org/10.1046/j.1365-2486.2001.00418.x DOI: https://doi.org/10.1046/j.1365-2486.2001.00418.x

Carvalho-Santos, C., Honrado, J. P., & Hein, L. (2014). Hydrological services and the role of forests: Conceptualization and indicator-based analysis with an illustration at a regional scale. Ecological Complexity, 20, 69-80. https://doi.org/10.1016/j.ecocom.2014.09.001 DOI: https://doi.org/10.1016/j.ecocom.2014.09.001

Chapin, F. S., Woodwell, G. M., Randerson, J. T., Lovett, G. M., Rastetter, E. B., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo, J. M., Mooney, H. A., …, Schulze, E. D. (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10021-005-0105-7 DOI: https://doi.org/10.1007/s10021-005-0105-7

Chapin, F. S., Matson, P. A., & Vitousek, P. M. (2011). Principles of Terrestrial Ecosystem Ecology (2a ed.). Springer. DOI: https://doi.org/10.1007/978-1-4419-9504-9

Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M., Bongers, F., Zambrano, A. M., Aide, T. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. , Craven, D., Almeida-Cortez, J. S., Cabral, G. A., de Jong, B., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., …, Poorter, L. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5). E1501639. https://doi.org/10.1126/sciadv.1501639 DOI: https://doi.org/10.1126/sciadv.1501639

Collalti, A., Tjoelker, M. G., Hoch, G., Mäkelä, A., Guidolotti, G., Heskel, M., Petit, G., Ryan, M. G., Battipaglia, G., Matteucci, G., & Prentice, I. C. (2020). Plant respiration: controlled by photosynthesis or biomass?. Global Change Biology, 26(3), 1739-1753. https://doi.org/10.1111/gcb.14857 DOI: https://doi.org/10.1111/gcb.14857

Cotler, H., Durán, E., & Siebe, C. (2002). Historia Natural de Chamela. En F. A. Noguera, J. H. Vera Rivera, & A. N. Garcia Aldrede (Eds.), Caracterización morfo-edafológica y calidad de sitio de un bosque tropical caducifolio (pp. 17−79). Universidad Nacional Autónoma de México.

Curtis, P. S., & Gough, C. M. (2018). Forest aging, disturbance and the carbon cycle. New Phytologist, 219(4), 1188-1193. https://doi.org/10.1111/nph.15227 DOI: https://doi.org/10.1111/nph.15227

Deb Burman, P. K., Sarma, D., Chakraborty, S., Karipot, A., & Jain, A. K. (2020). The effect of Indian summer monsoon on the seasonal variation of carbon sequestration by a forest ecosystem over North-East India. SN Applied Sciences, 2(2), 1–16. https://doi.org/10.1007/s42452-019-1934-x DOI: https://doi.org/10.1007/s42452-019-1934-x

Delgado-Balbuena, J., Yépez, E. A., Paz-Pellat, P., Ángeles-Pérez, G., Alvarado-Barrientos, M. S., Bullock, S. H., Castellanos, A. E., Arredondo, T., Figueroa-Espinoza, B., Garatuza-Payán, J., González-del Castillo, E., González-Sosa, E., Maya-Delgado, Y., Rodríguez, J. C., Vargas, R., Vivoni, E. R., & Watts, C. J. (2019). Flujos Verticales de Carbono en Ecosistemas Terrestres. En F. Paz-Pellat, J. M. Hernández-Ayón, R. Sosa-Ávalos, & A. S. Velázquez-Rodríguez (Eds.), Estado del ciclo del carbono: agenda azul y verde (pp. 605-625). Programa Mexicano del Carbono.

Dirzo, R., Young, H. S., Mooney, H. A., & Ceballos, G. (2011). Seasonally dry tropical forests: ecology and conservation. Island Press. DOI: https://doi.org/10.5822/978-1-61091-021-7

Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., van Noordwijk, M., Creed, I. F., Pokorny, J., Gaveau, D., Spracklen, D. V., Bargués-Tobella, A., Ilstedt, U., Teuling, A. J., Gebreyohannis-Gebrehiwot, S., Sands, D. C., Muys, B., Verbist, B., …, Sullivan, C. A. (2017). Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43, 51-61. https://doi.org/10.1016/j.gloenvcha.2017.01.002 DOI: https://doi.org/10.1016/j.gloenvcha.2017.01.002

Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO] (2006). World agriculture: towards 2030/2050. Prospects for food, nutrition, agriculture and major commodity groups. FAO, p.78.

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K., (2005). Global Consequences of Land Use. Science, 309(5734), 570-574. https://doi.org/10.1126/science.1111772 DOI: https://doi.org/10.1126/science.1111772

García, A. G., Di Bella, C. M., Houspanossian, J., Magliano, P. N., Jobbágy, E. G., Posse, G., Fernández, R. J., & Nosetto, M. D. (2017). Patterns and controls of carbon dioxide and water vapor fluxes in a dry forest of central Argentina. Agricultural and Forest Meteorology, 247, 520–532. https://doi.org/10.1016/j.agrformet.2017.08.015 DOI: https://doi.org/10.1016/j.agrformet.2017.08.015

García-Oliva, F., & Jaramillo, V. J. (2011). Impacts of anthropogenic transformation of seasonally dry tropical forest on ecosystems biogeochemical processes. En R. Dirzo, H. S. Young, H. A. Mooney & G. Ceballos (Eds.), Seasonally dry tropical forest. Ecology and conservation (pp. 159-172). Island Publish. https://doi.org/10.5822/978-1-61091-021-7 DOI: https://doi.org/10.5822/978-1-61091-021-7_10

Gentine, P., Green, J., Guerin, M., Humphrey, V., Seneviratne, S. I., Zhang, Y., & Zhou, S. (2019). Coupling between the terrestrial carbon and water cycles - a review. Environmental Research Letters, 14(8), 083003. https://doi.org/10.1088/1748-9326/ab22d6 DOI: https://doi.org/10.1088/1748-9326/ab22d6

Gonzalez del Castillo, E., Sanchez-Azofeifa, A., Paw U., K. T., Gamon, J. A., & Quesada, M. (2018). Integrating proximal broad-band vegetation indices and carbon fluxes to model gross primary productivity in a tropical dry forest. Environmental Research Letters, 13(6). 065017. https://doi.org/10.1088/1748-9326/aac3f0 DOI: https://doi.org/10.1088/1748-9326/aac3f0

Goulden, M. L., Mcmillan, A., Winston, G. C., Rocha, A. V., Manies, K. L., Harden, J. W., & Bond-Lamberty, B. P. (2010). Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 17(2), 855-871. https://doi.org/10.1111/j.1365-2486.2010.02274.x DOI: https://doi.org/10.1111/j.1365-2486.2010.02274.x

Gurevitch, J., Scheiner, S. M., & Fox, G. A. (2002). The ecology of plants . Sinauer Associates.

Harmon, M. E., Bond-Lamberty, B., Tang, J., & Vargas, R. (2011). Heterotrophic respiration in disturbed forests: A review with examples from North America. Journal of Geophysical Research-Biogeosciences, 116(G4), G00K04. https://doi.org/10.1029/2010JG001495 DOI: https://doi.org/10.1029/2010JG001495

Hutyra, L. R., Munger, J. W., Saleska, S. R., Gottlieb, E., Daube, B. C., Dunn, A. L., Amaral, D. F., Camargo, P. B. de, & Wofsy, S. C. (2007). Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. Journal of Geophysical Research: Biogeosciences, 112(3), 1–16. https://doi.org/10.1029/2006JG000365 DOI: https://doi.org/10.1029/2006JG000365

Jaramillo, V., García-Oliva, F., & Martínez-Yrízar, A. (2010). La selva seca y las perturbaciones antrópicas en un contexto funcional. En: G. Ceballos, L. Martínez, A. García, E. Espinoza, J. Bezaury-Creel, & R. Dirzo (Eds.), Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México (pp. 235-250). Fondo de Cultura Económica - Conabio.

Jaramillo, V. J., Martínez-Yrízar, A., & Sanford, R. L. (2011). Primary productivity and biogeochemistry of seasonally dry tropical forests. En R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally dry tropical forest. Ecology and conservation (pp.109–128). Island Publish Co. https://doi.org/10.5822/978-1-61091-021-7 DOI: https://doi.org/10.5822/978-1-61091-021-7_7

Jaramillo, V. J., & Sanford, R. L. (1995) Nutrient cycling in tropical deciduous forest. En S. H. Bullock, H. A. Mooney, & E. A. Medina (Eds.), Season ally dry tropical forests (pp. 347-361). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511753398.014

Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., Sun, Y., Bollenbacher, A., & Meijer, H. (2017). Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proceedings of the National Academy of Sciences, 114(39), 10361-10366. https://doi.org/10.1073/pnas.1619240114 DOI: https://doi.org/10.1073/pnas.1619240114

Keenan, T. F., & Williams, C. A. (2018). The terrestrial carbon sink. Annual Review of Environment and Resources, 43, 219-243. https://doi.org/10.1146/annurev-environ-102017-030204 DOI: https://doi.org/10.1146/annurev-environ-102017-030204

Kira, T., & Shidei, T. (1967) Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Japanese Journal of Ecology, 17(2), 70-87. https://doi.org/10.18960/seitai.17.2_70

Lasky, J. R., Uriarte, M., & Muscarella, R. (2016). Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: Effects of rainfall seasonality. Environmental Research Letters, 11(11), 115003. https://doi.org/10.1088/1748-9326/11/11/115003 DOI: https://doi.org/10.1088/1748-9326/11/11/115003

Lavergne, A., Graven, H., De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., & Prentice, I. C. (2019). Observed and modelled historical trends in the water use efficiency of plants and ecosystems. Global Change Biology, 25(7), 2242-2257. https://doi.org/10.1111/gcb.14634 DOI: https://doi.org/10.1111/gcb.14634

Lele, S. (2009). Watershed services of tropical forests: from hydrology to economic valuation to integrated analysis. Current Opinion in Environmental Sustainability. 1(2), 148-155. https://doi.org/10.1016/j.cosust.2009.10.007 DOI: https://doi.org/10.1016/j.cosust.2009.10.007

Le Quéré, C. L., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, B. R., Boden, T. A., Tans, P. P., Andrews, A., Arora, V. K., Bakker, D. C., Barbero, L., Becker, M., Betts, R. A., Bopp, L., …, Zhu, D., (2018). Global carbon budget 2017. Earth System Science Data, 10(1), 405-448. https://doi.org/10.5194/essd-10-405-2018 DOI: https://doi.org/10.5194/essd-10-405-2018

Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349(6250), 827-832. https://doi.org/10.1126/science.aaa9932 DOI: https://doi.org/10.1126/science.aaa9932

Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T., & Laurance, W. F. (2009). Changing Ecology of Tropical Forests: Evidence and Drivers. Annual Review of Ecology, Evolution, and Systematics, 40(1), 529-549. https://doi.org/10.1146/annurev.ecolsys.39.110707.173345 DOI: https://doi.org/10.1146/annurev.ecolsys.39.110707.173345

Linares-Palomino, R., Oliveira-Filho, A. T., & Pennington, R. T. (2011). Neotropical seasonally dry forests: Diversity, endemism, and biogeography of woody plants. En R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally dry tropical forest, Ecology and conservation (pp. 3-21). Island Publish Co. https://doi.org/10.5822/978-1-61091-021-7 DOI: https://doi.org/10.5822/978-1-61091-021-7_1

de Lucia, E. H., Drake, J. E., Thomas, R. B., & Gonzalez-Meler, M. (2007). Forest carbon use efficiency: Is respiration a constant fraction of gross primary production?. Global Change Biology, 13(6), 1157-1167. https://doi.org/10.1111/j.1365-2486.2007.01365.x DOI: https://doi.org/10.1111/j.1365-2486.2007.01365.x

Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., …, Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12), 2509-2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x DOI: https://doi.org/10.1111/j.1365-2486.2007.01439.x

Luyssaert, S., Schulze, E. D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., Ciais, P., Grace, J. (2008). Old-growth forests as global carbon sinks. Nature, 455(7210), 213-215. https://doi.org/10.1038/nature07276 DOI: https://doi.org/10.1038/nature07276

Maass, M., & Burgos, A. (2011). Water Dynamics at the Ecosystem Level. En R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally dry tropical forest. Ecology and conservation (pp. 141-156). Island Publish Co. https://doi.org/10.5822/978-1-61091-021-7 DOI: https://doi.org/10.5822/978-1-61091-021-7_9

Martínez-Yrízar, A., Álvarez-Sánchez, J., & Maass, M. (2017). Análisis y perspectivas del estudio de los ecosistemas terrestres de México: dinámica hidrológica y flujos de nitrógeno y fósforo. Revista Mexicana de Biodiversidad, 88, 27-41. https://doi.org/10.1016/j.rmb.2017.10.008 DOI: https://doi.org/10.1016/j.rmb.2017.10.008

Martínez-Yrízar, A., Jaramillo, V. J., Maass, M., Búrquez, A., Parker, G., Álvarez-Yépiz, J. C.,Araiza, S., Verduzco, A., & Sarukhán, J. (2018). Resilience of tropical dry forest productivity to two hurricanes of different intensity in western Mexico. Forest Ecology and Management, 426, 53-60. https://doi.org/10.1016/j.foreco.2018.02.024 DOI: https://doi.org/10.1016/j.foreco.2018.02.024

Martínez-Yrízar, A., & Sarukhán, J. (1990). Litterfall patterns in a tropical deciduous forest in Mexico over a five-year period. Journal of Tropical Ecology, 6(4), 433-444. https://doi.org/10.1017/s0266467400004831 DOI: https://doi.org/10.1017/S0266467400004831

Marín‐Spiotta, E., & Sharma, S. (2013). Carbon storage in successional and plantation forest soils: a tropical analysis. Global Ecology and Biogeography, 22(1), 105-117. https://doi.org/10.1111/j.1466-8238.2012.00788.x DOI: https://doi.org/10.1111/j.1466-8238.2012.00788.x

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A., Seidl, R., …, Xu, C., (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368, 6494. https://doi.org/10.1126/science.aaz9463 DOI: https://doi.org/10.1126/science.aaz9463

Mendes, K. R., Campos, S., da Silva, L. L., Mutti, P. R., Ferreira, R. R., Medeiros, S. S., Perez-Marin, A. M., Marques, T. V., Ramos, T. M., de Lima Vieira, M. M., Oliveira, C. P., Gonçalves, W. A,. Costa, G. B., Antonio, A. C., Menezes, R. S., Bezerra, B. G., & Santos e Silva, C. M. (2020). Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Scientific Reports, 10(1), 9454. https://doi.org/10.1038/s41598-020-66415-w DOI: https://doi.org/10.1038/s41598-020-66415-w

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., & Moreno, J. (2009). Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 113(10), 2037-2051. https://doi.org/10.1016/j.rse.2009.05.003 DOI: https://doi.org/10.1016/j.rse.2009.05.003

Mitchard, E. T.(2018). The tropical forest carbon cycle and climate change. Nature, 559(7715), 527-534. https://doi.org/10.1038/s41586-018-0300-2 DOI: https://doi.org/10.1038/s41586-018-0300-2

Monson, R., & Baldocchi, D. (2014). Terrestrial biosphere-atmosphere fluxes. Cambridge University Press. https://doi.org/10.1017/CBO9781139629218 DOI: https://doi.org/10.1017/CBO9781139629218

Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17(1), 67-88. https://doi.org/10.1146/annurev.es.17.110186.000435 DOI: https://doi.org/10.1146/annurev.es.17.110186.000435

Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., & Phillips, R. P. (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 6(11), 1023-1027. https://doi.org/10.1038/nclimate3114 DOI: https://doi.org/10.1038/nclimate3114

Odum, E. P. (1969). The strategy of ecosystem development. Science, 164(3877), 262-270. https://doi.org/10.1126/science.164.3877.262 DOI: https://doi.org/10.1126/science.164.3877.262

Ortiz-Reyes, A. D., Valdez-Lazalde, J. R., Angeles-Perez, G., los Santos-Posadas, D., Héctor, M., Schneider, L., ..., Peduzzi, A. (2019). LiDAR data transects a sampling strategy to estimate aboveground biomass in forest areas. Madera y Bosques, 25(3), e2531872. https://doi.org/10.21829/myb.2019.2531872 DOI: https://doi.org/10.21829/myb.2019.2531872

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1201609 DOI: https://doi.org/10.1126/science.1201609

Pan, Y., Birdsey, R. A., Phillips, O. L., & Jackson, R. B. (2013). The structure, distribution, and biomass of the world's forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593-622. https://doi.org/10.1146/annurev-ecolsys-110512-135914 DOI: https://doi.org/10.1146/annurev-ecolsys-110512-135914

Peñuelas, J., Ciais, P., Canadell, J. G., Janssens, I. A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Pios, S., Vautard, R., & Sardans, J. (2017). Shifting from a fertilization- dominated to a warming-dominated period. Nature Ecology & Evolution, 1, 1438-1445. https://doi.org/10.1038/s41559-017-0274-8 DOI: https://doi.org/10.1038/s41559-017-0274-8

Pennington, R. T., Prado, D. E., & Pendry, C. A. (2000). Neotropical seasonally dry forests and quaternary vegetation changes. Journal of Biogeography, 27(2), 261-273. https://www.jstor.org/stable/2656258 DOI: https://doi.org/10.1046/j.1365-2699.2000.00397.x

Perez-Ruiz, E. R., Garatuza-Payan, J., Watts, C. J., Rodriguez, J. C., Yepez, E. A., & Scott, R. L. (2010). Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS). Journal of Arid Environments, 74(5), 556-563. https://doi.org/10.1016/j.jaridenv.2009.09.029 DOI: https://doi.org/10.1016/j.jaridenv.2009.09.029

Portillo-Quintero, C. A., & Sánchez-Azofeifa, G. A. (2010). Extent and conservation of tropical dry forests in the Americas. Biological Conservation, 143(1), 144-155. https://doi.org/10.1016/j.biocon.2009.09.020 DOI: https://doi.org/10.1016/j.biocon.2009.09.020

Powers, J. S., & Marín-Spiotta, E. (2017). Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Review of Ecology, Evolution, and Systematics, 48(1), 497-519. https://doi.org/10.1146/annurev-ecolsys-110316-022944 DOI: https://doi.org/10.1146/annurev-ecolsys-110316-022944

Quesada, M., Sanchez-Azofeifa, G. A., Alvarez-Anorve, M., Stoner, K. E., Avila-Cabadilla, L., Calvo-Alvarado, J., Castillo, A., Espíritu-Santo, M. M., Fagundes, M., Fernandes, G. W., Gamon, J., Lopezaraiza-Mikel, M., Lawrence, D., Patricia, L., Morellato, C., Powers, J. S., Neves, F. S., Rosas-Guerrero, V., Sayago, R., & Sanchez-Montoya, G. (2009). Succession and management of tropical dry forests in the Americas: Review and new perspectives. Forest Ecology and Management, 258(6), 1014-1024. https://doi.org/10.1016/j.foreco.2009.06.023 DOI: https://doi.org/10.1016/j.foreco.2009.06.023

Quijas, S., Boit, A., Thonicke, K., Murray-Tortarolo, G., Mwampamba, T., Skutsch, M., Simoes, M., Ascarrunz, N., Peña-Claros, M., Jones, L., Arets, E., Jaramillo, V. J., Lazos, E., Toledo, M., Martorano, L. G., Ferraz, R., & Balvanera, P. (2019). Modelling carbon stock and carbon sequestration ecosystem services for policy design: a comprehensive approach using a dynamic vegetation model. Ecosystems and People, 15(1), 42-60. https://doi.org/10.1080/26395908.2018.1542413 DOI: https://doi.org/10.1080/26395908.2018.1542413

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., Van Der Velde, M., Vicca, S., Walz, A., & Wattenbach, M., (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287-295. https://doi.org/10.1038/nature12350 DOI: https://doi.org/10.1038/nature12350

Reichstein, M., & Carvalhais, N. (2019). Aspects of forest biomass in the earth system: its role and major unknowns. Surveys in Geophysics, 40(4), 693-707. https://doi.org/10.1007/s10712-019-09551-x DOI: https://doi.org/10.1007/s10712-019-09551-x

Robles-Morua, A., Che, D., Mayer, A. S., & Vivoni, E. R. (2015), Hydrologic assessment of proposed reservoirs in the Sonora River Basin, Mexico, under historical and future climate scenarios. Hydrological Sciences Journal, 60(1), 50-66. DOI: https://doi.org/10.1080/02626667.2013.878462

Rodda, S. R., Thumaty, K. C., Praveen, M. S., Jha, C. S., & Dadhwal, V. K. (2021). Multi-year eddy covariance measurements of net ecosystem exchange in tropical dry deciduous forest of India. Agricultural and Forest Meteorology, 301-302. 108351. https://doi.org/10.1016/j.agrformet.2021.108351 DOI: https://doi.org/10.1016/j.agrformet.2021.108351

Rojas‐Robles, N. E., Garatuza‐Payán, J., Álvarez‐Yépiz, J. C., Sánchez‐Mejía, Z. M., Vargas, R., & Yépez, E. A. (2020). Environmental controls on carbon and water fluxes in an old‐growth tropical dry forest. Journal of Geophysical Research: Biogeosciences, e2020JG005666. https://doi.org/10.1029/2020JG005666 DOI: https://doi.org/10.1029/2020JG005666

Ryan, M. G., Binkley, D., & Fownes, J. H. (1997). Age‐related decline in forest productivity: Pattern and process. Advances in Ecological Research, 27, 213-262. https://doi.org/10.1016/S0065-2504(08)60009-4 DOI: https://doi.org/10.1016/S0065-2504(08)60009-4

Sánchez‐Azofeifa, G. A., Quesada, M., Rodríguez, J. P., Nassar, J. M., Stoner, K. E., Castillo, A., Garvin, T., Zent, E. L., Calvo‐Alvarado, J. C., Kalacska, M. E., Fajardo, L., Gamon, J. A. & Cuevas‐Reyes, P. (2005), Research Priorities for Neotropical Dry Forests1. Biotropica, 37(4) 477-485. https://doi.org/10.1046/j.0950-091x.2001.00153.x-i1 DOI: https://doi.org/10.1046/j.0950-091x.2001.00153.x-i1

Santini, N. S., Villarruel-Arroyo, A., Adame, M. F., Lovelock, C. E., Nolan, R. H., Gálvez-Reyes, N., González, E. J., Olivares-Resendiz, B., Mastretta-Yanes, A., & Piñero, D. (2020). Organic carbon stocks of Mexican montane habitats: variation among vegetation types and land-use. Frontiers in Environmental Science, 8, 581476. https://doi.org/10.3389/fenvs.2020.581476 DOI: https://doi.org/10.3389/fenvs.2020.581476

Schimel, D., Stephens, B. B., & Fisher, J. B. (2015). Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences, 112(2), 436-441. https://doi.org/10.1073/pnas.1407302112 DOI: https://doi.org/10.1073/pnas.1407302112

Schimel, D. et al. (2019). Flux towers in the sky: global ecology from space. New Phytologyst, 224(2), 570-584. https://doi.org/10.1111/nph.15934 DOI: https://doi.org/10.1111/nph.15934

Silva, P. F., Lima, J. R. de S., Antonino, A. C. D., Souza, R., de Souza, E. S., Silva, J. R. I., & Alves, E. M. (2017). Seasonal patterns of carbon dioxide, water and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil. Journal of Arid Environments, 147, 71–82. https://doi.org/10.1016/j.jaridenv.2017.09.003 DOI: https://doi.org/10.1016/j.jaridenv.2017.09.003

Souza, L. S. B. de, Moura, M. S. B. de, Sediyama, G. C., & Silva, T. G. F. da. (2017). Carbon exchange in a caatinga area during an unusually drought year. Agrometeoros, 25(1), 37–45. http://dx.doi.org/10.31062/agrom.v25i1.26265 DOI: https://doi.org/10.31062/agrom.v25i1.26265

Tang, J., Luyssaert, S., Richardson, A. D., Kutsch, W., & Janssens, I. A. (2014). Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proceedings of the National Academy of Sciences, 111(24), 8856–8860. https://doi.org/10.1073/pnas.1320761111 DOI: https://doi.org/10.1073/pnas.1320761111

Tarin-Terrazas, T., Alvarado-Barrientos, S., Cueva-Rodríguez, A., Hinojo-Hinojo, C., González del Castillo, E., Sánchez-Mejía, Z., Villarreal-Rodríguez, S., & Yépez-González, E. A. (2020) MexFlux: sinergias para diseñar, evaluar e informar soluciones climáticas naturales. Elementos para Políticas Públicas, 4(2), 99-118.

Tarin, T., Yepez, E. A., Garatuza-Payan, J., Rodriguez, J. C., Méndez-Barroso, L. A., Watts, C. J., & Vivoni, E. R. (2020). Evapotranspiration flux partitioning at a multi-species shrubland with stable isotopes of soil, plant and atmosphere waterpools. Atmósfera, 33(4), 319-335. https://doi.org/10.20937/ATM.52710 DOI: https://doi.org/10.20937/ATM.52710

Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B., & White, J. W. (2011). Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment, 9(1), 9-17. https://doi.org/10.1890/100047 DOI: https://doi.org/10.1890/100047

Uuh‐Sonda, J. M., Figueroa‐Espinoza, B., Gutiérrez‐Jurado, H. A., & Méndez‐Barroso, L. A. (2022). Ecosystem productivity and evapotranspiration dynamics of a seasonally dry tropical forest of the Yucatan Peninsula. Journal of Geophysical Research, Biogeosciences, 127(1), e2019JG005629. https://doi.org/10.1029/2019JG005629 DOI: https://doi.org/10.1029/2019JG005629

Villarreal, S., Guevara, M., Alcaraz-Segura, D., & Vargas, R. (2019). Optimizing an Environmental Observatory Network Design Using Publicly Available Data. Journal of Geophysical Research: Biogeosciences, 124(7), 1812-1826. https://doi.org/10.1029/2018JG004714 DOI: https://doi.org/10.1029/2018JG004714

Vargas, R., Allen, M. F., & Allen, E. B. (2008). Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Global Change Biology, 14(1),109-124. https://doi.org/10.1111/j.1365-2486.2007.01462.x DOI: https://doi.org/10.1111/j.1365-2486.2007.01462.x

Vargas, R., Yépez, E. A., Andrade, J. L., Ángeles, G., Arredondo, T., Castellanos, A., Delgado, J., Garatuza-Payan, J., González del Castillo, E., Oechel, W., Sánchez-Azofeifa, A., Velasco, E., Vivoni, E, & Watts, C. (2013). Progress and opportunities for monitoring greenhouse gases fluxes in Mexican ecosystems: the MexFlux network. Atmósfera, 26(3), 325-336. DOI: https://doi.org/10.1016/S0187-6236(13)71079-8

Verduzco, V. S., Garatuza-Payán, J., Yépez, E. A., Watts, C. J., Rodríguez, J. C., Robles-Morua, A., & Vivoni, E. R. (2015). Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico. Geophysical Research: Biogeosciences, 120(10), 2081-2094. https://doi.org/10.1002/2015JG003119 DOI: https://doi.org/10.1002/2015JG003119

Wang, S., Zhang, Y., Ju, W., Chen, J. M., & Ciais, P. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370(6522), 1295-1300. https://doi.org/10.1126/science.abb7772 DOI: https://doi.org/10.1126/science.abb7772

Waring, R. H., Landsberg, J., & Williams, M. (1998) Net primary production of forests: a constant fraction of gross primary production?. Tree Physiology, 18(2), 129-134. https://doi.org/10.1093/treephys/18.2.129 DOI: https://doi.org/10.1093/treephys/18.2.129

White, P.S., & Pickett, T. A. (1985). Natural disturbances and patch dynamics, En S. T. A. Pickett, & P. S. White (Eds.), The ecology of natural disturbance and patch dynamics (pp. 3-13). Academic Press. DOI: https://doi.org/10.1016/B978-0-08-050495-7.50006-5

Yepez, E. A., Scott, R. L., Cable, W. L., & Williams, D. G. (2007). Intraseasonal variation in water and carbon dioxide flux components in a semiarid riparian woodland. Ecosystems, 10(7), 1100-1115. https://doi.org/10.1007/s10021-007-9079-y DOI: https://doi.org/10.1007/s10021-007-9079-y

Yoda, K. (1967). Comparative ecological studies on three main types of forest vegetation in Thailand III. Community respiration. Nature and Life in Southeast Asia, 5, 83-148.

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Youngryel, R., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J., Qin, Z., Quine, T., …, Yang, S. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5(8), eaax1396. https://doi.org/10.1126/sciadv.aax1396 DOI: https://doi.org/10.1126/sciadv.aax1396

Zhu, K. (2020). Understanding forest dynamics by integrating age and environmental change. New Phytologist, 228(6), 1728-1733. https://doi.org/10.1111/nph.16412 DOI: https://doi.org/10.1111/nph.16412

Descargas

Publicado

2023-04-26

Cómo citar

Rojas Robles, N. E., Yépez, E. A., Alvarez-Yépiz, J. C., Sanchez-Mejía, Z. M., Garatuza-Payan, J., & Rivera-Díaz, M. A. (2023). Producción neta del ecosistema durante la sucesión ecológica secundaria: lecciones desde el bosque tropical seco. Madera Y Bosques, 29(1), e2912368. https://doi.org/10.21829/myb.2023.2912368
Metrics
Vistas/Descargas
  • Resumen
    1657
  • PDF
    1052
  • LENS
    9

Número

Sección

Artículos de Actualidad

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.