Estimación alométrica de biomasa arbórea mediante un enfoque generalizado a nivel de especie y multiespecie
DOI:
https://doi.org/10.21829/myb.2021.2742434Palabras clave:
carbono, ecosistemas terrestres, estimaciones específicas y generalizadas, relación entre exponentes alométricos, punto común de intersecciónResumen
Los ecosistemas terrestres tienen almacenes en la biomasa aérea (B) de alta importancia para acciones de mitigación del cambio climático a través de mecanismos tales como REDD+. Para obtener posibles compensaciones financieras por evitar deforestar o degradar los bosques, además de la conservación, incrementar los almacenes de carbono y manejo forestal sustentable, es necesario evaluar los errores de estimación de biomasa y carbono, que generalmente están asociados al modelo alométrico usado. Los modelos alométricos sobre las relaciones entre diámetro normal (D) y altura total (H) con la biomasa usan técnicas estadísticas que no aprovechan las relaciones entre los parámetros de los modelos, ni las relaciones entre las constantes y exponentes de cada modelo, por lo que en este trabajo se presenta un marco teórico generalizado aplicable a nivel de monoespecies y multiespecies, el cual fue aplicado a un conjunto de 684 mediciones de D, H y B, provenientes de 23 bases de datos de especies individuales. Los resultados obtenidos, cuando se cuenta con datos, prácticamente no presentaron error cuando se consideraron todos los parámetros. Cuando faltó información de un parámetro, las estimaciones realizadas con diferentes aproximaciones mostraron errores de estimación comparables con los obtenidos por los métodos clásicos de generación de modelos alométricos generalizados. El proceso metodológico desarrollado sirve de base para plantear cambios en los enfoques de generación de información alométrica, para simplificar modelos y para reducir los errores en la estimación de la biomasa y el carbono.
Descargas
Citas
Antin, C., Pélissier, R., Vincent, G., & Couteron, P. (2013). Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest. Trees, 27, 1485-1495. doi: 10.1007/s00468-013-0896-7 DOI: https://doi.org/10.1007/s00468-013-0896-7
Avendaño Hernández, D. M., Acosta Mireles, M., Carrillo Anzures, F., & Etchevers Barra, J. D. (2009). Estimación de biomasa y carbono en un bosque de Abies religiosa. Revista Fitotecnia Mexicana, 32(3), 233-238. doi: 10.35196/rfm.2009.3.233-238 DOI: https://doi.org/10.35196/rfm.2009.3.233-238
Baskerville, G. L. (1972). Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forestry, 2(1), 49-53. doi: 10.1139/x72-009 DOI: https://doi.org/10.1139/x72-009
Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation for tropical forests with applications to forest inventory data. Forest Science, 35(4), 881-902. doi: 10.1093/forestscience/35.4.881
Brown, S. (1997). Estimating biomass change of tropical forests, a primer. Forest Resources Assessment Publication. Roma: Forestry Papers 134, FAO. 134 p.
Carré, F., Hiederer, R., Blujdea, V., & Koeble, R. (2010). Background guide for the calculation of land carbon stocks in the biofuel’s sustainability scheme drawing on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. EUR 24573 EN. Luxembourg: Office for Official Publications of the European Communities. 109 p.
Carrillo Anzures, F., Acosta-Mireles, M., Flores-Ayala, E., Juárez-Bravo, J. E., & Bonilla, E. P. (2014). Estimación de biomasa y carbono en dos especies arbóreas en La Sierra Nevada, México. Revista Mexicana de Ciencias Agrícolas, 5(5), 779-793. doi: 10.29312/remexca.v5i5.901 DOI: https://doi.org/10.29312/remexca.v5i5.901
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. doi: 10.1007/s00442-005-0100-x DOI: https://doi.org/10.1007/s00442-005-0100-x
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society London B, 359(1443), 409-420. doi: 10.1098/rstb.2003.1425 DOI: https://doi.org/10.1098/rstb.2003.1425
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C, Duque, A., Eid, T., Fearnside, P. M., Goodman, R. S., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190. doi: 10.1111/gcb.12629 DOI: https://doi.org/10.1111/gcb.12629
Chojnacky, D. C., Heath, L.S. & Jenkins, J.C. (2014). Updated generalized biomass equations for North American tree species. Forestry: An International Journal of Forest Research, 87(1), 129-151. doi: 10.1093/forestry/cpt053 DOI: https://doi.org/10.1093/forestry/cpt053
Clark, D. B., Clark, D. A., & Read, J. M. (1998). Edaphic variation and the mesoscale distribution of tree species. Forest Ecology and Management, 86(1), 101-112. doi: 10.1046/j.1365-2745.1998. 00238.x DOI: https://doi.org/10.1046/j.1365-2745.1998.00238.x
Crow, E. L., & K. Shimizu. (1988). Lognormal distributions. Theory and applications. New York: Dekker.
De Castilho, C. V., Magnusson, W. E., Nazaré, R., Araújo, O., Luizão, R. C. C., Luizão, F., Lima, A. P., & Higuchi, N. (2006). Variation in aboveground tree live biomass in a central Amazonian forest: effects of soils and topography. Forest Ecology and Management, 234(1), 85-96. doi: 10.1016/j.foreco.2006.06.024 DOI: https://doi.org/10.1016/j.foreco.2006.06.024
Djomo, A. N., Ibrahima, A., Saborowski, J., & Gravenhorst, G. (2010). Allometric equations for biomass estimation in Cameroon and pan moist tropical equation including biomass data from Africa. Forrest Ecology and Management, 260(10), 1873-1885. doi: 10.1016/j.foreco.2010.08.034 DOI: https://doi.org/10.1016/j.foreco.2010.08.034
Fayolle, A., Loubota Panzou, G. J., Drouet, T., Swaine, M. D., Bauwens, S., Vleminckx, J., Biwole, A., Lejeune, P., & Doucet, J. L. (2016). Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. Forest Ecology and Management, 374, 42-50. doi: 10.1016/j.foreco.2016.04.033 DOI: https://doi.org/10.1016/j.foreco.2016.04.033
Fehrmann, L., & Kleinn, C. (2006). General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in Central Europe. Forest Ecology and Management, 236, 4112-421. doi: 10.1016/j.foreco.2006.09.026 DOI: https://doi.org/10.1016/j.foreco.2006.09.026
Feldpausch, T. R., L. Banin, O. L. Phillips, T. R. Baker, S. L. Lewis, C. A. Quesada, K. Affum-Baffoe, E. J. M. M. Arets, N. J. Berry, M. Bird, E. S. Brondizio, P. de Camargo, J. Chave, G. Djagbletey, T. F. Domingues, M. Drescher, P. M. Fearnside, M. B. França, N. M. Fyllas, G. Lopez G., A. Hladik, N. Higuchi, M. O. Hunter, Y. lida, K. A. Salim, A. R. Kassim, M. Keller, J. Kemp, D. A. King, J. C. Lovett, B. S. Marimon, B. H. Marimon J., E. Lenza, A. R. Marshall, D. J. Metcalfe, E. T. A. Mitchard, E. F. Moran, B. W. Nelson, R. Nilus, E. M. Nogueira, M. Palace, S. Patiño, K. S. H. Peh, M. T. Raventos, J. M. Reitsma, G. Saiz, F. Schrodt, B. Sonké, H. E. Taedoumg, S. Tan, L. White, H. Wöll and J. Lloyd. (2011). Height-diameter allometry of tropical forest trees. Biogeosciences 8: 1081-1106. DOI: https://doi.org/10.5194/bg-8-1081-2011
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo, M., Lopez-Gonzalez, Banin, L., Abu, K. S., Affum-Baffoe, K. B., Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragão, L., Araujo Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard, G. A., Baker, T. R., Bánki, O. S., Berry, N. J., Cardozo, N., Chave, J., Comiskey, J. A., Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T. E., Erwin, T. L., Fearnside, P . M., França, M. B., Freitas, M. A., Higuchi, N., Honorio, E., lida, Y., Jiménez, E., Kassim, A. R., Killeen, T. J., Laurance, W. F., Lovett, J. C., Malhi, Y., Marimon, B.S., Marimon-Junior, B. H., Lenza, E., Marshall A. R., Mendoza, C., Metcalfe, D. J., Mitchard, E. T. A, Neill, D. A., Nelson, B. W., Nilus, R., Nogueira, E. M., Parada, A., Peh, K. S. H., Pena, A. C., Peñuela, M. C., Pitman, N. C. A., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez-Angulo, H., Reitsma, J. M., Rudas, A., Saiz, G., Salomão, R. P., Schwarz, M., Silva, N., Silva-Espejo, J., Silveira, M., Sonké, B., Stropp, J., Taedoumg, H. E., Tan, S., teer Steege, H., Terborgh, J., Torello-Raventos, M., van der Heijden, G. M. F., Vásquez, R., Vilanova, E., Vos, V. A., White, L., Willcock, S., Woell, H., & Phillips, O. L. (2012). Tree height integrated int pantropical forest biomass estimates. Biogeosciences, 9(8), 3381-3403. doi: 10.5194/bg-9-3381-2012 DOI: https://doi.org/10.5194/bg-9-3381-2012
Gibbs, H. K., Brown, S., Niles, H. O & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(4), 1-13. doi: 10.1088/1748-9326/2/4/045023 DOI: https://doi.org/10.1088/1748-9326/2/4/045023
Gómez-Díaz, J. D., Etchevers-Barra, J. D., Monterrosos-Rivas, A. L., Campo-Alvez, J., & Tinoco-Rueda, J. A. (2011). Ecuaciones alométricas para estimar biomasa y carbono en Quercus magnoliaefolia. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(2), 261-272. doi: 10.5154/r.rchscfa.2010.11.117 DOI: https://doi.org/10.5154/r.rchscfa.2010.11.117
Gomes-Soares, M. L., & Schaeffer-Novelli, Y. (2005). Above-ground biomass of mangrove species I. Analysis of models. Estuarine, Coastal and Shelf Science, 65(1-2), 1-18. doi: 10.1016/j.ecss.2005.05.001 DOI: https://doi.org/10.1016/j.ecss.2005.05.001
Goodman, R. C., Phillips, O. L & Baker, T. R. (2014). The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 24(4), 680-698. doi: 10.1890/13-0070.1 DOI: https://doi.org/10.1890/13-0070.1
Henry, M., Picard, N., Trotta, C., Manlay, R. J., Valentini, R., Bernoux, M., & Saint-André, L. (2011). Estimating tree biomass of Sub-Saharan African forests: a review of available allometric equations. Silva Fennica, 45(3B), 477-569. doi: 10.14214/sf.38 DOI: https://doi.org/10.14214/sf.38
Hersh, A. H. (1931). Facet number and genetic growth constants in bar-eyed stocks of Drosophila. The Journal of Experimental Zoology, 60(2), 213-248. doi: 10.1002/jez.1400600204 DOI: https://doi.org/10.1002/jez.1400600204
Hulshof, C. M., Swenson, N. G., & Weiser, M. D. (2015). Tree height-diameter allometry across United States. Ecology and Evolution, 5(6), 1193-1204. doi: 10.1002/ece3.1328 DOI: https://doi.org/10.1002/ece3.1328
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species. Forest Science, 49(1), 12-35. doi: 10.1093/forestscience/49.1.12
Johnston, R. S., & Bartos, D. L. (1977). Summary of nutrient and biomass data from two Aspen sites in Western United States. Research Note INT-227. Intermountain Forest and Range Experiment Station. Utah, Ogden: USDA Forest Service. 15 p.
Jokela, E. J., Shannon, C. A., & White, E. H. (1981). Biomass and nutrient equations for mature Betula papyrifera Marsh. Can. J. For. Res., 11(2), 298-304. doi: 10.1139/x81-040 DOI: https://doi.org/10.1139/x81-040
Kebede, B., & Soromessa, T. (2018). Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. Cuspidate in Mana Angetu Forest. Ecosystem Health and Sustainability, 4(1), 1-12. doi: 10.1080/20964129.2018.1433951 DOI: https://doi.org/10.1080/20964129.2018.1433951
Ketterings, Q. M., Coe, R., van Noordwijk, M., Ambagau’, Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1-3), 199-209. doi: 10.1016/S0378-1127(00)00460-6 DOI: https://doi.org/10.1016/S0378-1127(00)00460-6
Kindermann, G., Obersteiner, M., Sohngen, B., Sathaye, J., Andrasko, K., Rametsteiner, E., Schlamadinger, B., Wunder, S., & Beach, R. (2008). Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the. National Academy of Sciences, 105(30), 10302-10307. doi: 10302-10307 DOI: https://doi.org/10.1073/pnas.0710616105
Lines, E. R., Zavala, M. A., Purves, D. W., & Coomes, D. A. (2012). Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography, 21(10), 1017-1028. doi: 10.1111/j.1466-8238.2011. 00746.x DOI: https://doi.org/10.1111/j.1466-8238.2011.00746.x
Lumer, H. (1936). The relation between b and k in systems of relative growth functions of the form Y = bXk. The American Naturalist, 70, 188-191. DOI: https://doi.org/10.1086/280654
Lumer, H. (1939). The dimensions and interrelationship of the relative growth constants. American Naturalist, 73, 339-345. DOI: https://doi.org/10.1086/280844
Lumer, H., Anderson, B. G., & Hersh, A. H. (1942). On the significance of the constant b in the law of allometry Y=bXa. American Naturalist, 76, 364-375. DOI: https://doi.org/10.1086/281053
Manuri, S., Brack, C., Noor’an, F., Rusolono, T., Anggraini, S. M., Dotzauer, H., & Kumara, I. (2016). Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia. Forest Ecosystems, 3(28), 1-10. doi: 10.1186/s40663-016-0087-2 DOI: https://doi.org/10.1186/s40663-016-0087-2
Mascaro, J., & Schnitzer, S. A. (2011). Dominance by the introduced tree Rhamnus cathartica (common buckthorn) may limit aboveground carbon storage in Southern Wisconsin forests. Forest Ecology and Management, 261(3), 545-550. doi: 10.1016/j.foreco.2010.11.005 DOI: https://doi.org/10.1016/j.foreco.2010.11.005
Méndez, G., J., Turlan, O. A, Ríos, J. C. S., & Nájera, J. A. L. (2012). Ecuaciones alométricas para estimar biomasa aérea de Prosopis laevigata (Humb. and Bonpl. Ex Willd.) M. C. Johnst. Revista Mexicana de Ciencias Forestales, 3(13), 57-72. DOI: https://doi.org/10.29298/rmcf.v3i13.489
Miller, E. L., Meeuwig, R. O & Budy, J. D. (1981). Biomass of singleleaf Pinyon and Utah Juniper. Research Paper INT-273. Intermountain Forest and Range Experimental Station. Utah, Ogden: USDA Forest Service. 19 p. DOI: https://doi.org/10.2737/INT-RP-273
Molto, Q., Rossi, V., & Blanc, L. (2013). Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution, 4(2), 175-183. doi: 10.1111/j.2041-210x.2012.00266.x DOI: https://doi.org/10.1111/j.2041-210x.2012.00266.x
Muukkonen, P. (2007). Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126(2), 157-166. doi: 10.1007/s10342-007-0168-4 DOI: https://doi.org/10.1007/s10342-007-0168-4
Návar, J. J. (2010a). Biomass allometry for tree species of Northwestern Mexico. Tropical and Subtropical Agroecosystems, 12(3), 507-517.
Návar, J. J. (2010b). Measurement and assessment methods of forest aboveground biomass: a literature review and challenges ahead. En: M. Momba & F. Bux. Biomass. Intech. Sciyo, Croatia.
Návar, J., Ríos, J. S., Pérez, G. V., de J. Rodríguez, F., & Domínguez, P. A. (2013). Regional aboveground biomass equations for North American arid and semi-arid forests. Journal of Arid Environments, 97, 127-135. doi: 10.1016/j.jaridenv.2013.05.016 DOI: https://doi.org/10.1016/j.jaridenv.2013.05.016
Ngomanda, A., Engone, N. L., Lebamba, J., Moundounga, Q., Gomat, H., Sidoine Mankou, G., Loumeto, J., Midoko, D., Kossi, F., Zinga, R., Botsika, K. H., Mikala, C., Nyangadouma, R., Lépengué, N., Mbatchi, B., & Picard, N. (2013). Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest? Forest Ecology and Management, 312, 1-9. doi: 10.1016/j.foreco.2013.10.029 DOI: https://doi.org/10.1016/j.foreco.2013.10.029
Nickless, A., Scholes, R. J., & Archibald, S. (2011). A method for calculating the variance and confidence intervals for tree biomass estimates obtained from allometric equations. South African Journal of Sciences, 107(5-6), 86-95. doi: 10.4102/sajs.v107i5/6.356 DOI: https://doi.org/10.4102/sajs.v107i5/6.356
Niklas, K. J. (1994). Plant allometry, the scaling of form and process. Chicago: University of Chicago Press. 365 p.
O´Brien, S. T., Hubbell, S. P., Spiro, P., Condit, R., & Foster, R. B. (1995). Diameter, height, crown, and age relationships in eight neotropical tree species. Ecology, 76(6), 1926-1939. doi: 10.2307/1940724 DOI: https://doi.org/10.2307/1940724
Parresol, B. R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45(4), 573-593.
Pastor, J., Aber, J. D., & Melillo, J. M. (1984). Biomass prediction using generalized allometric regressions for some north east tree species. Forest Ecology and Management, 7(4), 265-274. doi: 10.1016/0378-1127(84)90003-3 DOI: https://doi.org/10.1016/0378-1127(84)90003-3
Paul, K. I., Roxburgh, S. H, Chave, J., England, J. R., Zerihun, A., Specht, A., Lewis, T., Bennet, L. T., Baker, T. G., Adams, M. A., Huxtable, D., Montagu, K. D., Falster, D. S., Feller, M., Sochacki, S., Ritson, P., Bastin, G., Bartle, J., Wildy, D., Hobbs, T., Larmour, J., Waterworth, R., Stewart, H. T. L., Jonson, J., Forrester, D. I., Applegate. G., Mendham D., Bradford, M., O´Grady, D. A., Green, D., Sudmeyer, R., Rance, S. J., Turner, J., Barton, C., Wenk, E. H., Grove, T., Attiwill, P. M., Pinkard, E., Butler, D., Brooksbank, K., Spencer, B., Snowdon, P., O´Brien, N., Battaglia, M., Cameron, D. M., Hamilton, S., McAuthur, G., & Sinclair, J. (2016). Testing the generality of above-ground biomass allometry across plant functional types at the continental scale. Global Change Biology, 22(6), 2106-2124. doi: 10.1111/gcb.13201 DOI: https://doi.org/10.1111/gcb.13201
Paz, F., Odi, M., Cano, A., Bolaños, M. A., & Zarco, A. (2009). Equivalencia ambiental en la productividad de la vegetación. Agrociencia, 43(6), 635-648.
Pelletier, J., Kirby, K. R & Potvin, C. (2010). Significance of carbon stock uncertainties on emission reductions from deforestation and forest degradation in developing countries. Forest Policy and Economics, 24, 3-11. doi: 10.1016/j.forpol.2010.05.005 DOI: https://doi.org/10.1016/j.forpol.2010.05.005
Picard, N., Boyemba, F. B., & Rossi, V. (2015a). Reducing the error in biomass estimates strongly depends on model selection. Annals of Forest Science, 72(6), 811-823. doi: 10.1007/s13595-014-0434-9 DOI: https://doi.org/10.1007/s13595-014-0434-9
Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A., & Henry, M. (2015b). Should tree biomass allometry be restricted to power models? Forest Ecology and Management, 356, 156-163. doi: 10.1016/j.foreco.2015.05.035 DOI: https://doi.org/10.1016/j.foreco.2015.05.035
Pilli, R., Anfodillo, T., & Carrer, M. (2006). Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management, 237(1), 583-593. doi: 10.1016/j.foreco.2006.10.004 DOI: https://doi.org/10.1016/j.foreco.2006.10.004
Ploton, P., Barbier, N., Takoudjou, S. M., Réjou, M., Boyemba, F. B., Chuyong, G., Dauby, G., Droissart, V., Fayolle, A., Goodman, R. C., Henry, M., Kamdem, N. G., Mukirania, J. K., Kenfack, D., Libalah, M., Ngomanda, A., Rossi, V., Sonké, B., Texier, N., Thomas, D., Zebaze, D., Couteron, P., Berger, U., & Pélissier, R. (2016). Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences, 13(5), 1571-1585. doi: 10.5194/bg-13-1571-2016 DOI: https://doi.org/10.5194/bg-13-1571-2016
Pretzsch, H., & Dieler, J. (2012). Evidence of variant intra- and interspecific scaling of tree crown structure for allometric theory. Oecologia, 169(3), 637-649. doi: 10.1007/s00442-011-2240-5 DOI: https://doi.org/10.1007/s00442-011-2240-5
Price, C. A., Enquist, B. J., & Savage, V. M. (2007). A general model for allometric covariation in botanical form and function. Proceedings of the. National Academy of Sciences, 104(32), 13204-13209. doi: 10.1073/pnas.0702242104 DOI: https://doi.org/10.1073/pnas.0702242104
Rojas-García, F., de Jong, B. H. J., Martínez, P. Z., & Paz, F. (2015). Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science, 72(6), 835-864. doi: 10.1007/s13595-015-0456-y DOI: https://doi.org/10.1007/s13595-015-0456-y
Ruesch, A., & Gibbs, H. (2008). New global biomass carbon map for the year 2000 based on IPCC tier-1 methodology. Carbon Dioxide Information Analysis Center. USA: Oak Ridge National Laboratory.
Schlaegel, B. (1981). Willow Oak volume and weight tables for the Mississippi delta. Research Paper so-1. Southern Forest Experiment Station. New Orleand: USDA Forest Service. 15 p. DOI: https://doi.org/10.2737/SO-RP-173
Sileshi, G. W. (2014). A critical review of forest biomass estimation models, common mistakes, and corrective measures. Forest Ecology and Management, 329, 237-254. doi: 10.1016/j.foreco.2014.06.026 DOI: https://doi.org/10.1016/j.foreco.2014.06.026
Sprugel, D. G. (1983). Correcting for bias in log-transformed allometric equations. Ecology, 64(1), 209-210. doi: 10.2307/1937343 DOI: https://doi.org/10.2307/1937343
Ter-Mikaelian, M. T., & Korzukhin, M. (1997). Biomass equations for sixty-five North American tree species. Forest Ecology and Management, 97(1), 1-24. doi: 10.1016/S0378-1127(97)00019-4 DOI: https://doi.org/10.1016/S0378-1127(97)00019-4
Thomas, S. C. (1996). Asymptotic height as a predictor of growth and biometric characteristics in Malaysian rain forest trees. American Journal of Botany, 83(5), 556-566. DOI: https://doi.org/10.1002/j.1537-2197.1996.tb12739.x
van Breugel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. S. (2011). Estimating carbon stock in secondary forests: decisions and uncertainty associated with allometric biomass models. Forest Ecology and Management, 262(8), 1648-1657. doi: 10.1016/j.foreco.2011.07.018 DOI: https://doi.org/10.1016/j.foreco.2011.07.018
Vargas, B., López, C. A., Corral, J. J., Lopez, J. O., Aguirre, C. G., & Álvarez, J. G. (2017). Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests, 8(269). doi: 10.3390/f8080269. DOI: https://doi.org/10.3390/f8080269
West, G. B., Brown, J. H. & Enquist, B. J. (1999). A general model for the structure and allometry of plant vascular system. Nature, 400, 664-667. doi: 10.1038/23251 DOI: https://doi.org/10.1038/23251
White, J. F., & Gould, S. J. (1965). Interpretation of the coefficient in the allometric equation. American Naturalist, 99(904), 5-18. doi: 10.1086/282344 DOI: https://doi.org/10.1086/282344
Woods, K. D., Feiveson, A. H., & Botkin, D. B. (1991). Statistical error analysis for biomass density and leaf area index estimation. Canadian Journal of Forest Research, 21(7), 974-989. doi: 10.1139/x91-135 DOI: https://doi.org/10.1139/x91-135
Zapata-Cuartas, C., Sierra, A., & Alleman, L. (2012). Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. Forest Ecology and Management, 277, 173-179. doi: 10.1016/j.foreco.2012.04.030 DOI: https://doi.org/10.1016/j.foreco.2012.04.030
Zhang, Z., Zhong, Q., Niklas, K. J., Cai, L., Yang, Y., & Cheng, D. (2016). A predictive nondestructive model for the covariation of tree height, diameter, and stem volumen scaling relationships. Scientific Reports, 6(1). doi: 10.1038/srep31008 DOI: https://doi.org/10.1038/srep31008
Zianis, D., & Mencuccini, M. (2004). On simplifying analyses of forest biomass. Forest Ecology and Management, 187(2-3), 311-332. doi: 10.1016/j.foreco.2003.07.007 DOI: https://doi.org/10.1016/j.foreco.2003.07.007
Publicado
Cómo citar
-
Resumen704
-
PDF257
-
LENS141
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.