Carbono orgánico del suelo y su relación con la biomasa radical de Quercus sp.
DOI:
https://doi.org/10.21829/myb.2021.2742445Palabras clave:
acumulación de carbono y raíces, distribución de raíces finas medias y gruesas con la profundidad, Sierra de Huautla Morelos, suelos forestalesResumen
Se estudió la distribución de la biomasa de raíces finas, medias y gruesas, la concentración carbono orgánico del suelo (COS), la densidad aparente (Da), los almacenes de COS, en los primeros 90 cm de profundidad en tres bosques con predominio de encino (Quercus sp.) ubicados en la zona centro de México (Morelos). La edad estimada de los árboles de los tres bosques fue (a) ≈ 40 años o maduro, ≈ 20 años o medio y ≈ 10 años o joven. En general, la concentración de COS y los almacenes de COS decrecieron a medida que lo hacía la profundidad del suelo, en tanto que la Da aumentaba. Más de la mitad del COS almacenado se encontró en los primeros 30 cm del perfil. La biomasa de raíces finas presentó un patrón de disminución exponencial con la profundidad, mientras que la biomasa de las raíces medias y gruesas tuvo un patrón irregular, pero siempre con tendencia a disminuir a medida que lo hacía la profundidad. En los bosques de las tres edades indicadas, la biomasa de raíces finas, medias y gruesas presentó mayor correlación con la Da que con los almacenes de carbono orgánico del suelo. Los coeficientes de ajustes (R2) de los modelos de regresión lineal que relacionan Da con el contenido de COS se ubicaron entre 0.61 y 0.72.
Descargas
Citas
Arrouays, D., & Pélissier, P. (1994). Modeling carbon storage profiles in temperate forest humic loamy soils of France. Soil Science, 157, 185-192. DOI: https://doi.org/10.1097/00010694-199403000-00007
Bandaranayake, W., Qian, Y. L., Parton, W. J., Ojima, D. S., & Follett, R. F. (2003). Estimation of soil organic carbon changes in Turfgrass systems using the CENTURY Model. Agronomy Journal, 95(3), 558-563. doi: 10.2134/agronj2003.5580 DOI: https://doi.org/10.2134/agronj2003.5580
Beets, P. N., Oliver, G.R., & Clinton, P.W. (2002). Soil carbon protection in podocarp/hardwood forest, and the effects of conversion to pasture and exotic pine forest. Environmental Pollution, 166, 563-573. doi: 10.1016/S0269-7491(01)00248-2 DOI: https://doi.org/10.1016/S0269-7491(01)00248-2
Bernoux, M., Arrouays, D., Cerri, C., & Bourennane, H. (1998). Modeling vertical distribution of carbon in oxisols of the western Brazilian Amazon (Rondonia). Soil Science, 163(12), 941–951. DOI: https://doi.org/10.1097/00010694-199812000-00004
Bingham, I. J., & Bengough, A. G. (2003). Morphological plasticity of wheat and barley roots in response to spatial variation in soil strength. Plant and Soil, 250, 273–282. doi: 10.1023/A:1022891519039 DOI: https://doi.org/10.1023/A:1022891519039
Bouillet, J. P., Laclau, J. P., Arnaud, M., M’Bou, A. T., Saint-André, L., & Jourdan, C. (2002). Changes with age in the spatial distribution of roots of Eucalyptus clone in Congo: Impact on water and nutrient uptake. Forest Ecology and Management, 171(1-2), 43-57. doi: 10.1016/S0378-1127(02)00460-7 DOI: https://doi.org/10.1016/S0378-1127(02)00460-7
Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world's upland forests. Oecologia, 111, 1-11. doi: 10.1007/s004420050201 DOI: https://doi.org/10.1007/s004420050201
Challenger, A. (1998). Utilización y conservación de los ecosistemas terrestres de México: Pasado, presente y futuro. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Conabio. 847pp.
Chen, X., Eamus, D., & Hutley, L. B. (2004). Seasonal patterns of fine-root productivity and turnover in a tropical savanna of northern Australia. Journal of Tropical Ecology, 20(2), 221–224. doi: 10.1017/S0266467403001135 DOI: https://doi.org/10.1017/S0266467403001135
Cheng, Y., Han, Y., Wang, Q., & Wang, Z. (2006). Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelinii plantation. Frontiers of Biology in China, 1(3), 310-317. doi: 10.1007/s11515-006-0039-2 DOI: https://doi.org/10.1007/s11515-006-0039-2
Claus, A., & George, E. (2005). Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research, 35(7), 1617-1625. doi: 10.1139/x05-079 DOI: https://doi.org/10.1139/x05-079
Crowe, A. M., McClean, C. J., & Cresser, M. S. (2006). An application of genetic algorithms to the robust estimation of soil organic and mineral fraction densities. Environmental Modelling & Software, 21(10), 1503–1507. doi: 10.1016/j.envsoft.2006.03.001 DOI: https://doi.org/10.1016/j.envsoft.2006.03.001
Daly, C., Bachelet, D., Lenihan, J. M., Neilson, R. P., Parton, W., & Ojima, D. (2000). Dynamic simulation of tree-grass interactions for global change studies. Ecological Applications, 10(2), 449-469. doi: 10.1890/1051-0761(2000)010[0449:DSOTGI]2.0.CO;2 DOI: https://doi.org/10.1890/1051-0761(2000)010[0449:DSOTGI]2.0.CO;2
Don, A., Schumacher, J., Scherer L., M., Scholten, T., & Schulze, E. D. (2007). Spatial and vertical variation of soil carbon at two grassland sites-Implications for measuring soil carbon stocks. Geoderma, 141(3-4), 272–282. doi: 10.1016/j.geoderma.2007.06.003 DOI: https://doi.org/10.1016/j.geoderma.2007.06.003
Etchevers, J. D., Monreal, B. C., Hidalgo, C., Acosta, M., Padilla, J., & López, R. M. (2005). Manual para la determinación de carbono en la parte aérea y subterránea de sistemas de producción en laderas. Colegio de postgraduados, Montecillo, México. 29 pp
Finér, L., Ohashi, M., Noguchi, K., & Hirano, Y. (2011). Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 261(2), 265–277. doi: 10.1016/j.foreco.2010.10.016 DOI: https://doi.org/10.1016/j.foreco.2010.10.016
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277–280. doi: 10.1038/nature06275 DOI: https://doi.org/10.1038/nature06275
Fujimaki, R., Tateno, R., Hirobe, M., Tokuchi, N., & Takeda, H. (2004). Fine root mass in relation to soil N supply in a cool temperate forest. Ecological Research, 19(5), 559–562. doi: 10.1111/j.1440-1703.2004.00669.x DOI: https://doi.org/10.1111/j.1440-1703.2004.00669.x
Gal, A., Vyn, T.J., Micheli, E., Kladivko, E.J., & McFee, W.W. (2007). Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil & Tillage Research, 96(1-2), 42–51. doi: 10.1016/j.still.2007.02.007 DOI: https://doi.org/10.1016/j.still.2007.02.007
Gill, R. A., & Jackson, R. B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist Foundation, 147(1), 13–31. doi: 10.1046/j.1469-8137.2000.00681.x DOI: https://doi.org/10.1046/j.1469-8137.2000.00681.x
Goberna., M., Sánchez, J, Pascual, J. A., & García, C. (2006). Surface and subsurface organic carbon, microbial biomass and activity in a forest soil sequence. Soil Biology & Biochemistry, 38(8), 2233–2243. doi: 10.1016/j.soilbio.2006.02.003 DOI: https://doi.org/10.1016/j.soilbio.2006.02.003
Gómez, J. D. (2008). Determinación de los almacenes de carbono en los compartimentos aéreo y subterráneo de dos tipos de vegetación en la reserva de la biosfera “Sierra de Huautla”, Morelos, México. PhD Thesis, Colegio de Postgraduados, Montecillos, México. 194 pp.
Gordon, W. S., & Jackson, R. B. (2000). Nutrient concentrations in fine roots. Ecology, 81(1), 275-280. doi: 10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2
Grace, J. (2004). Understanding and managing the global carbon cycle. Journal of Ecology, 92(2), 189–202. doi: 10.1111/j.0022-0477.2004.00874.x DOI: https://doi.org/10.1111/j.0022-0477.2004.00874.x
Helmisaari, H. S., Derome, J., Nöjd, P., & Kukkola, M. (2007). Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiology, 27(10), 1493–1504. doi: 10.1093/treephys/27.10.1493 DOI: https://doi.org/10.1093/treephys/27.10.1493
Hodge, A. (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol, 162, 9–24. doi: 10.1111/j.1469-8137.2004.01015.x DOI: https://doi.org/10.1111/j.1469-8137.2004.01015.x
Huntington T. G., Johnson, C. E. Johnson, A. H., Siccama, T. G., Ryan, D. F. (1989). Relationship between soil organic carbon and bulk density relationships in a forested spodosol. Soil Science, 148, 380-386. DOI: https://doi.org/10.1097/00010694-198911000-00009
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389-411. doi: 10.1007/BF00333714 DOI: https://doi.org/10.1007/BF00333714
Janos, D. P., Scott, J., & Bowman, D. M. (2008). Temporal and spatial variation of fine roots in a northern Australian Eucalyptus tetrodonta savanna. Journal of Tropical Ecology, 24, 177–188. doi:10.1017/S0266467408004860 DOI: https://doi.org/10.1017/S0266467408004860
Janzen, H., (2004). Carbon cycling in earth systems: a soil science perspective. Agriculture, Ecosystems & Environment, 104(3), 399–417. doi: 10.1016/j.agee.2004.01.040 DOI: https://doi.org/10.1016/j.agee.2004.01.040
Jasso F. I., Galicia, L., Chávez-Vergara, B., Merino, A., Tapia-Torres, Y., & García-Oliva, F. (2020). Soil organic matter dynamics and microbial metabolism along an altitudinal gradient in Highland tropical forest. Science of the Total Environment, 741, 140143. doi: 10.1016/j.scitotenv.2020.140143 DOI: https://doi.org/10.1016/j.scitotenv.2020.140143
Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10(2), 423-436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 DOI: https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
Joslin, J. D., & Henderson, G. S. (1987). Organic matter and nutrients associated with fine root turnover in a white oak stand. Forest Science, 33(2), 330–346. doi: 10.1093/forestscience/33.2.330
Lal, R., & Kimble, J. M. (2001). Importance of soil bulk density and methods of its importance. In: Lal, R., Kimble, J. M., Follett, R. F., Stewart, B. A. (Eds.), Assessment methods for soil carbon. Lewis Publishers, London, pp. 31–44. DOI: https://doi.org/10.1201/9781482278644
Leuschner, C., & Hertel, D. (2002). Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. In: Esser K., Lüttge U., Beyschlag W., Hellwig F. (eds). Progress in Botany, 64, (pp. 40-438). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-55819-1_16 DOI: https://doi.org/10.1007/978-3-642-55819-1_16
Meier, I. C., & Leuschner, C. (2008). Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Global Change Biology, 14(9), 2081-2095. doi: 10.1111/j.1365-2486.2008.01634.x DOI: https://doi.org/10.1111/j.1365-2486.2008.01634.x
Meersmans, J., van Wesemael, B., De Ridder, F., & Van Molle, M. (2009). Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium), Geoderma, 152(1-2), 43–52. doi: 10.1016/j.geoderma.2009.05.015 DOI: https://doi.org/10.1016/j.geoderma.2009.05.015
Mund, M., Kummetz, E., Hein, M., Bauer, G. A., & Schulze, E. D. (2002). Growth and carbon stock of a spruce forest chronosequence in central Europe. Forest Ecology and Management, 171(3), 275-296. doi: 10.1016/S0378-1127(01)00788-5 DOI: https://doi.org/10.1016/S0378-1127(01)00788-5
Oliver, G. R., Beets, P. N., Garrett, L. G., Pearce, S. H., Kimberly, M. O., Ford-Robertson, J. B., & Robertson, K. A. (2004). Variation in soil carbon in pine plantations and implications for monitoring soil carbon stocks in relation to land-use change and forest site management in New Zealand. Forest Ecology and Management, 203(1-3), 283-295. doi: 10.1016/j.foreco.2004.07.045 DOI: https://doi.org/10.1016/j.foreco.2004.07.045
Omonode, R. A., & Vyn, T. J. (2006). Vertical distribution of soil organic carbon and nitrogen under warm-season native grasses relative to croplands in west-central Indiana, USA. Agriculture Ecosystems and Environment, 117(2–3), 159–170. doi: 10.1016/j.agee.2006.03.031 DOI: https://doi.org/10.1016/j.agee.2006.03.031
Pattison, A. B., Moody, P. W., Badcock, K. A., Smith, L. J., Armour, J. A., Rasiah, V., Cobon, J. A., Gulino, L.-M., & Mayer, R. (2008). Development of key soil health indicators for the Australian banana industry. Applied Soil Ecology, 40(1), 155–164. doi: 10.1016/j.apsoil.2008.04.002 DOI: https://doi.org/10.1016/j.apsoil.2008.04.002
Paustian, K., Lehmann, J, Ogle, S., Reay, D., Robertson, P., & Smith, P. (2016). Climate-smart soils. Nature, 532, 49-57. doi: 10.1038/nature17174. https://doi.org/10.1038/nature17174 DOI: https://doi.org/10.1038/nature17174
Paz, F. y Etchevers, J. (2016). Distribución a profundidad del carbono orgánico en los suelos de México. Terra Latinoamericana, 34(3), 339-355.
Powers, J. S., Treseder, K. K., & Lerdau, M. T. (2005). Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances. New Phytologist, 165(3), 913–921. doi: 10.1111/j.1469-8137.2004.01279.x DOI: https://doi.org/10.1111/j.1469-8137.2004.01279.x
SAS. (2004). Statistical Analysis System, Version 9. SAS Institute, Cary, NC
Schenk, H. J., & Jackson, R. B. (2002). The global biogeography of roots. Ecological Monographs, 72(3), 311–328. doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
Schenk, H. J., & Jackson, R. B. (2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126(1-2), 129–140. doi: 10.1016/j.geoderma.2004.11.018 DOI: https://doi.org/10.1016/j.geoderma.2004.11.018
Sleutel, S., De Neve, S., & Hofman, G. (2003). Estimates of carbon stock changes in Belgian cropland. Soil Use and Management, 19(2), 166–171. doi: 10.1111/j.1475-2743.2003.tb00299.x DOI: https://doi.org/10.1079/SUM2003187
Slobodian, N., Van Rees, K., & Pennock, D. (2002). Cultivation-induced effects on belowground biomass and organic carbon. Soil Science Society of America Journal 66 (3), 924–930. doi: 10.2136/sssaj2002.9240 DOI: https://doi.org/10.2136/sssaj2002.9240
Trumbore, S. (2000). Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications, 10(2), 399–411. doi: 10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2 DOI: https://doi.org/10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2
Vadeboncoeur, M. V., Hamburg, S. P., & Yanai, R. D. (2007). Validation and refinement of allometric equations for roots of northern hardwoods. Canadian Journal of Forest Research, 37(9), 1–7. doi: 10.1139/X07-032 DOI: https://doi.org/10.1139/X07-032
Yanai, R. D., Park, B. B., & Hamburg, S. P. (2006). The vertical and horizontal distribution of roots in northern hardwood stands of varying age. Canadian Journal of Forest Research, 36(2), 450–459. doi: 10.1139/x05-254 DOI: https://doi.org/10.1139/x05-254
Zhou, Z., & Shangguan, Z. (2007). Vertical distribution of fine root in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant and Soil, 291, 119–129. doi: 10.1007/s11104-006-9179-z DOI: https://doi.org/10.1007/s11104-006-9179-z
Publicado
Cómo citar
-
Resumen811
-
PDF313
-
LENS114
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.