Vol. 28 Núm. 2 (2022): Verano 2022
Artículos Científicos

Reservas de carbono y micromorfología de la materia orgánica en suelos ribereños en tres ecosistemas de alta montaña: volcán Iztaccíhuatl

Juan Carlos Sandoval Aparicio
Colegio de Postgraduados
Biografía
Ma. del Carmen Gutierrez Castorena
Colegio de Postgraduados
Biografía
Gerardo Cruz Flores
Universidad Nacional Autónoma de México
Biografía
Carlos Alberto Ortiz Solorio
Colegio de Postgraduados
Biografía

Publicado 2022-11-15

Palabras clave

  • catena,
  • factores hidromorfológicos,
  • humedales,
  • llanuras de inundación,
  • uso de suelo,
  • ríos
  • ...Más
    Menos
  • catena,
  • hydromorphological factors,
  • wetlands,
  • flood plains,
  • land use,
  • micromorphology,
  • rivers
  • ...Más
    Menos

Resumen

Los suelos ribereños se reconocen como regiones importantes de almacenamiento de carbono. Sin embargo, los diferentes factores hidromorfológicos de los gradientes ribereños, así como el uso del suelo, pueden influir en la distribución y concentración de carbono orgánico del suelo (COS). El objetivo de este estudio fue evaluar las concentraciones de COS en catenas de suelos ribereños y caracterizar la materia orgánica del suelo (MOS) a escala micromorfológica en tres ecosistemas ribereños del volcán Iztaccíhuatl (pastizales, bosques y zona agrícola). En cada sitio se colectaron muestras alteradas e inalteradas en perfiles de suelos en una catena perpendicular a la corriente. En el laboratorio se determinó el COS en la fracción de tierra fina y se describió la micromorfología de la MOS en secciones delgadas. El COS varió de acuerdo con la vegetación y el uso de suelo (pastizal 38.95 kg m-2 > bosque 34.40 kg m-2 > zona agrícola 17.77 kg m-2). Los valores más altos de COS ocurren en los suelos más cercanos a la corriente hasta 68.92 kg m-2. La MOS presenta diferentes residuos orgánicos y etapas de descomposición y con mayor abundancia en el subsuelo ribereño donde las condiciones de hidromorfismo limitan su mineralización. Los suelos ribereños tienen un mayor potencial para acumular carbono (halóctono y autóctono) que las tierras altas adyacentes. Asimismo, la degradación de estos ecosistemas repercute en el almacenamiento de carbono y en su papel en la mitigación del cambio climático.

Citas

  1. Acosta, M., Carrillo, F., & Díaz, M. (2009). Determinación del carbono total en bosques mixtos de Pinus patula Schl. et Cham. Terra, 27(2), 105–114.
  2. Andrade-Castañeda, H. J., Segura-Madrigal, M. A., & Rojas-Patiño, A. S. (2016). Carbono orgánico del suelo en bosques riparios, arrozales y pasturas en Piedras, Tolima, Colombia. Agronomía Mesoamericana, 27(2), 1659-1321. https://doi.org/http://dx.doi.org/10.15517/am.v27i2.24359
  3. Aufdenkampe, A., Mayorga, E., Raymond, P., Melack, J., Doney, S., Alin, S., Aalto, R., & Yoo, K. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53–60. https://doi.org/10.1890/100014
  4. Bernoux, M., Feller, C., Cerri C., C., Eschenbrenner, V., & Cerri, C., E. P. (2005). Soil carbon sequestration. En E. Roose, R. Lal, C. Feller, B. Barthéns & B. Stewart (Eds.), Soil erosion and carbon dynamics (pp, 13-22). Boca Raton, USA: Taylor and Francis Group.
  5. Blank, R. R., Svejcar, T., & Riegel, G. (2006). Soil attributes in a Sierra Nevada riparian meadow as influenced by grazing. Rangeland Ecology and Management, 59(3), 321–329.
  6. Blazejewski, G. A., Stolt, M. H., Gold, A. J., & Groffman, P. M. (2005). Macro- and micromorphology of subsurface carbon in riparian zone soils. Soil Science Society of America Journal, 69(4), 1320-1329. https://doi.org/10.2136/sssaj2004.0145
  7. Blazejewski, G. A., Stolt, M. H., Gold, A. J., Gurwick, N., & Groffman, P. M. (2009). Spatial distribution of carbon in the subsurface of riparian zones. Soil Science Society of America Journal, 73(5), 1733-1740. https://doi.org/10.2136/sssaj2007.0386
  8. Bockheim, J. G., & Gennadiyev, A. N. (2000). The role of soil-forming processes in the definition of taxa in Soil Taxonomy and the World Soil Reference Base. Geoderma, 95(1-2), 53-72. https://doi.org/10.1016/S0016-7061(99)00083-X
  9. Bockheim, J. G., & Munroe, J. S. (2014). Organic carbon pools and genesis of alpine soils with permafrost: a review. Arctic, Antarctic, and Alpine Research, 46(4), 987–1006. https://doi.org/10.1657/1938-4246-46.4.987
  10. Bolaños G., Y., Bolaños G., M. A., Paz P., F., & Ponce P., J. I. 2017. Estimación de carbono almacenado en bosques de oyamel y ciprés en Texcoco, Estado de México. Terra, 35, 73-86.
  11. Bullock, P., Fedoroff, N., & Jongerius, A. (1985). Handbook for soil thin section description. Waine.
  12. Buol, S. W., Southard, R. J., Graham, R. C., & McDaniel, P.A. (2011). Soil genesis and classification (6 ed.). New York, USA: John Wiley & Sons.
  13. Cabezas, A., & Comín, F. A. (2010). Carbon and nitrogen accretion in the topsoil of the Middle Ebro River Floodplains (NE Spain): Implications for their ecological restoration. Ecological Engineering, 36(5), 640-652. https://doi.org/10.1016/j.ecoleng.2008.07.021
  14. Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., & Melack, J. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1), 172-185. https://doi.org/10.1007/s10021-006-9013-8
  15. Colombini, G., Auclerc, A., & Watteau, F. (2020). Techno-moder: A proposal for a new morpho-functional humus form developing on Technosols revealed by micromorphology. Geoderma, 375, 114526. https://doi.org/10.1016/j.geoderma.2020.114526
  16. Comisión Nacional de Áreas Naturales Protegidas [Conanp]. 2015. Plan de Manejo del Parque Nacional Iztaccíhuatl Popocatépetl. Comisión Nacional de Áreas Naturales Protegidas, México.
  17. Conforti, M., Luca, F., Scarciglia, F., Matteucci, G., & Buttafuoco, G. (2016). Soil carbon stock in relation to soil properties and landscape position in a forest ecosystem of southern Italy (Calabria region). Catena, 144, 23-33. https://doi.org/10.1016/j.catena.2016.04.023
  18. Cruz-Flores, G., Santiago-Aguilar, I., Guerra-Hernández, E. A., & Valderrábano-Gómez, J. M. (2019). Contenidos de carbono orgánico en ecosistemas ribereños de montaña de México. Revista Latinoamericana el Ambiente y las Ciencias, 10(24), 70-93.
  19. Daniels, R. B., Gamble, E. E., & Holzhey, C. S. (1975). Thick Bh horizons in the North Carolina coastal plain: I. Morphology and relation to texture and soil ground water. Soil Science Society of America Journal, 39(6), 1177-1181. https://doi.org/10.2136/sssaj1975.03615995003900060039x
  20. De Carlo, N. D., Oelbermann, M., & Gordon, A. M. (2019). Carbon dioxide emissions: Spatiotemporal variation in a young and mature riparian forest. Ecological Engineering, 138, 353-361. https://doi.org/10.1016/j.ecoleng.2019.07.036
  21. Dengiz, O., Saygin, F., & Imamoglu, A. (2019). Spatial variability of soil organic carbon density under different land covers and soil types in a sub-humid terrestrial ecosystem. Eurasian Journal of Soil science, 8(1), 35-43. https://doi.org/10.18393/ejss.486582
  22. Dietzel, R., Liebman, M., & Archontoulis, S. (2017). A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool. Soil Discuss, 3(3), 139-152. https://doi.org/10.5194/soil-3-139-2017
  23. Dodds, W. K., Gido, K., Whiles, M. R., Daniels, M. D., & Grudzinski, B. P. (2015). The stream biome gradient concept: Factors controlling lotic systems across broad biogeographic scales. Freshwater Science, 34(1), 1-19. https://doi.org/10.1086/679756
  24. Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land‐use change on soil organic carbon stocks–a meta‐analysis. Global Change Biology, 17(4), 1658-1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x
  25. Eaton, J. M., McGoff, N. M., Byrne, K. A., Leahy, P., & Kiely, G. (2007). The impact of agricultural land cover change on soil organic carbon stocks in Ireland., COST, 639, 75-80.
  26. Ehlen, J., & Wohl, E. (2002). Joints and Landform Evolution in Bedrock Canyons. Transactions, Japanese Geomorphological Union, 23(2), 237–255.
  27. Fan, H., Zhao, W., Daryanto, S., Fu, B., Wang, S., & Wang, Y. (2018). Vertical Distributions of Soil Organic Carbon and its Influencing Factors Under Different Land Use Types in the Desert Riparian Zone of Downstream Heihe River Basin, China. Journal of Geophysical Research: Atmospheres, 123(14), 7741-7753. https://doi.org/10.1029/2018JD028268.
  28. Food and Agriculture Organization of the United Nations [FAO] (2009). Guía para la descripción de suelos (4ª ed.). FAO.
  29. Frouz, J., Dvorščík, P., Vindušková, O., & Cienciala, E. (2013). Plant Production, Carbon Accumulation and Soil Chemistry at Post-Mining Sites. En J. Frouz (Ed), Soil biota and ecosystem development in post mining sites (pp. 88-103). New York: CRC Press.
  30. Gamboa, A. M., & Galicia, L. 2012. Land-use/cover change effects and carbon controls on volcanic soil profiles in highland temperate forests. Geoderma, 170, 390–402. https://doi.org/10.1016/j.geoderma.2011.11.021
  31. Gebhart, D. L., Johnson, H. B., Mayeux, H. S., & Polley, H. W. (1994). The CRP increases soil organic carbon. Journal of Soil and Water Conservation, 49(5), 488-492.
  32. Gold, A. J., Groffman, P. M., Addy, K., Kellogg, D. Q., Stolt, M., & Rosenblatt, A. E. (2001). Landscape Attributes as Controls on Groithd Water Nitrate Removal Capacity of Riparian Zones. JAWRA Journal of the American Water Resources Association, 37(6), 1457-1464. https://doi.org/10.1111/j.1752-1688.2001.tb03652.x
  33. González-Vargas T & Gutiérrez-Castorena MDC (2022). Brightness Values-Based Discriminant Functions for Classification of Degrees of Organic Matter Decomposition in Soil Thin Sections. Spanish Journal of Soil Science, 12, 10348. https://doi.org/10.3389/sjss.2022.10348
  34. Grossman, R. B., Harms, D. S., Kuzila, M. S., Glaum, S. A., Hartung, S. L., & Fortner, J. R. (2018). Organic carbon in deep alluvium in southeast Nebraska and northeast Kansas. En R. Lal, J. M. Kimble, R. F. Follett & B. A. Stewart (Eds), Soil Processes and the carbon cycle advances in soil science (45-55). Boston: CRC Press.
  35. Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423-436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
  36. John, B., Yamashita, T., Ludwig, B., & Flessa, H. (2005). Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128(1-2), 63-79. https://doi.org/10.1016/j.geoderma.2004.12.013
  37. Lefèvre, C., Rekik, F., Alcantara, V., & Wiese, L. (2017). Soil organic carbon: the hidden potential. Food and Agriculture Organization of the United Nations (FAO).
  38. McGranahan, D. A., Daigh, A. L., Veenstra, J. J., Engle, D. M., Miller, J. R., & Debinski, D. M. (2014). Connecting soil organic carbon and root biomass with land-use and vegetation in temperate grassland. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/487563
  39. Mitra, S., Wassmann, R., & Vlek, P. L. (2005). An appraisal of global wetland area and its organic carbon stock. Current Science, 88(1), 25-35.
  40. Montgomery, D. R. (2002). Valley Formation by Fluvial and Glacial Erosion. Geology, 30(11), 1047–1050.
  41. Montgomery, D. R., Buffington, J. M. (1997). Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109, 596–611. https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2
  42. Murphy, C.P., 1986: Thin section preparation of soils and sediments. A.B. Academic Publishers, Berkshamsted, England, 149 p
  43. Norton, J. B., Jungst, L. J., Norton, U., Olsen, H. R., Tate, K. W., & Horwath, W. R. (2011). Soil carbon and nitrogen storage in upper montane riparian meadows. Ecosystems, 14(8), 1217-1231. https://dx.doi.org/10.1007/s10021-011-9477-z
  44. Pérez-Ramírez, S., Ramírez, M. I., Jaramillo-López, P.F., & Bautista, F. (2013). Contenido de carbono orgánico en el suelo bajo diferentes condiciones forestales: reserva de la biosfera mariposa monarca. México. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 19(1), 157-173.
  45. Ponnamperuma, F. N. 1972. The chemistry of submerged soil. Advances in Agronomy, 24, 29-96. https://doi.org/10.1016/S0065-2113(08)60633-1
  46. Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land use-change: Processes and potential. Global Change Biology, 6, 317–328. https://doi.org/10.1046/j.1365-2486.2000.00308.x
  47. Ricker, M. C., Donohue, S. W., Stolt, M. H., & Zavada, M. S. (2012). Development and application of multi‐proxy indices of land use change for riparian soils in southern New England, USA. Ecological Applications, 22(2), 487-501. https://doi.org/10.1890/11-1640.1
  48. Ricker, M. C., Stolt, M. H., Donohue, S. W., Blazejewski, G. A., & Zavada, M. S. (2013). Soil organic carbon pools in riparian landscapes of southern New England. Soil Science Society of America Journal, 77(3), 1070-1079. https://doi.org/10.2136/sssaj2012.0297
  49. Rieger, I., Lang, F., Kowarik, I., & Cierjacks A. (2014). The interplay of sedimentation and carbon accretion in riparian forests. Geomorphology, 214, 157-167. https://doi.org/10.1016/j.geomorph.2014.01.023
  50. Riis, T., Kelly-Quinn, M., Aguiar, F. C., Manolaki, P., Bruno, D., Bejarano, M. D., Clerici, N., Fernandes, M. R., Franco, J. C., Pettit, N., Portela, A. P., Tammeorg, O., Tammeorg, P., Rodríguez-González, P. M., & Dufour, S. (2020). Global overview of ecosystem services provided by riparian vegetation. BioScience, 70(6), 501-514. https://doi.org/10.1093/biosci/biaa041
  51. Rojas-García, F., Santoyo-Gómez, G. H., González-Montiel, E., Velázquez-Rodríguez, A., & Pulido-Ponce, J. I. (2017). La ciencia del suelo en el ciclo del carbono de México. Elementos para Políticas Públicas, 1, 69-96.
  52. Ruffing, C., Kathleen, A., Dwire, K. A., & Daniels, M. D. (2016). Carbon pools in stream-riparian corridors: legacy of disturbance along mountain streams of south-eastern Wyoming. Earth Surface Processes and Landforms, 41(2), 2008-223. https://doi.org/10.1002/esp.3830
  53. Shoji, S., Nanzyo, M., & Dahlgren, R. A. (1994). Volcanic ash soils: genesis, properties and utilization. Elsevier.
  54. Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7-31. https://doi.org/10.1016/j.still.2004.03.008
  55. Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil structure and organic matter I. Distribution of aggregate‐size classes and aggregate‐associated carbon. Soil Science Society of America Journal, 64(2), 681-689. https://doi.org/10.2136/sssaj2000.642681x
  56. Stoops, G. 2003. Guidelines for analysis and description of soil and regolith thin sections. Soil society of America, Madison, Winsconcin, USA.
  57. Sutfin, N. A., & Wohl, E. (2017). Substantial soil organic carbon retention along floodplains of mountain streams. Journal of Geophysical Research: Earth Surface, 122(7), 1325-1338. https://doi.org/10.1002/2016JF004004
  58. Sutfin, N. A., Wohl, E. E., & Dwire, K. A. (2016). Banking carbon: a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surface Processes and Landforms, 41(1), 38-60. https://doi.org/10.1002/esp.3857
  59. Van Reeuwijk, L. P. (2002). Procedures for soil analysis: Wageningen. International Soil Reference and Information Centre. Technical Paper 9.
  60. Vázquez-Selem, L. (1997). Late Quaternary glaciations of Téyotl volcano, central Mexico. Quaternary International, 43, 67-73.
  61. Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., Von Lützow, M., Marin-Spiotta, E., Van-Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma, 333, 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026
  62. Yang, Y., Chen, Y., Li, Z., & Chen, Y. (2018). Land-use/cover conversion affects soil organic-carbon stocks: A case study along the main channel of the Tarim River, China. Plos One, 13(11). https://doi.org/10.1371/journal.pone.0206903
  63. Zaiets, O., & Poch, R. M. (2016). Micromorphology of organic matter and humus in Mediterranean mountain soils. Geoderma, 272, 83-92. https://doi.org/10.1016/j.geoderma.2016.03.006
  64. Zaiets, O., & Poch, R. M. (2018). Use of micromorphology for humus characterization and classification in some mediterranean calcareous soils. Applied Soil Ecology, 123, 672-681. https://doi.org/10.1016/j.apsoil.2017.09.016
  65. Zehetner, F., Lair, G. J., & Gerzabek, M. H. (2009). Rapid carbon accretion and organic matter pool stabilization in riverine floodplain soils. Global Biogeochemical Cycles, 23(4). https://doi.org/10.1029/2009GB003481