Evaluación fenólica y antioxidante en madera de Prosopis laevigata y corteza de Acrocarpus fraxinifolius
DOI:
https://doi.org/10.21829/myb.2023.2922503Palabras clave:
cedro rosado, etanol acuoso, mezquite, rendimiento en sólidos, solvente de extracción, UPLC/MSResumen
Durante el aprovechamiento forestal de las especies Prosopis laevigata (mezquite) y Acrocarpus fraxinifolius (cedro rosado) se generan productos de desecho, tanto de madera como de corteza. Este material contiene metabolitos secundarios como los compuestos fenólicos, con potencial en áreas farmacéuticas. Este trabajo tuvo como objetivo obtener extractos de madera de P. laevigata y corteza de A. fraxinifolius, mediante diferentes disolventes de extracción y distintas temperaturas, con el fin de encontrar las condiciones para obtener el mayor rendimiento, la mayor cantidad de fenoles, flavonoides y proantocianidinas, y su capacidad antioxidante evaluadas in vitro mediante FRAP, ABTS y poder reductivo. Se muestra la importancia del rendimiento de extracto cuando se expresan los resultados con base en material vegetal. Se identificaron sus compuestos fenólicos mediante UPLC/MS. En madera de P. laevigata las mejores condiciones de extracción fueron con acetato de etilo a 60 °C para resultados con base en extracto seco, y etanol 70% y 60 °C, para resultados base madera; sus principales compuestos fueron catequina, taxifolina, eriodictol y ácido protocatéquico. En corteza de A. fraxinifolius, el etanol 70% y temperaturas de 50 °C y 60 °C favorecieron el aumento de compuestos fenólicos y la capacidad antioxidante. Los principales compuestos identificados fueron ácido gálico, taxifolina, luteolina, apigenina y catequina. Los resultados brindan información sobre el uso de la madera de P. laevigata, hasta ahora inexplorada como fuente de compuestos fenólicos con potenciales aplicaciones en áreas farmacológicas, y sobre condiciones de extracción para mejorar la concentración de compuestos fenólicos en la corteza de A. fraxinifolius.
Descargas
Citas
Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., & Valéro, J. R. (2010). Extraction and analysis of Polyphenols: Recent trends. Critical Reviews in Biotechnology, 31(3), 227-249. https://doi.org/10.3109/07388551.2010.513677 DOI: https://doi.org/10.3109/07388551.2010.513677
Arnao, M. B. (2000). Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science & Technology, 11(11), 419-421. https://doi.org/10.1016/S0924-2244(01)00027-9 DOI: https://doi.org/10.1016/S0924-2244(01)00027-9
Carrillo-Parra, A., Rosales, M., Wehenkel, C., Foroughbakhch, R., González, H., & Garza, F. (2012). Phenols and flavonoids concentration and fungistatic activity of wood and bark of five common tropical species. Tropical and Subtropical Agroecosystems, 15(3), 621-628. http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v15i3.1566
Carrillo, A., Mayer, I., Koch, G., & Hapla, F. (2008). Wood anatomical characteristics and chemical composition of Prosopis laevigata grown in the northeast of Mexico. IAWA Journal, 29(1), 25-34. http://dx.doi.org/10.1163/22941932-90000167 DOI: https://doi.org/10.1163/22941932-90000167
Chaaban, H., Ioannou, I., Chebil, L., Slimane, M., Gérardin, C., Paris, C., Charbonnel, C., Chekir, L., & Ghoul, L. (2017). Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. Journal of Food Processing and Preservation, 41(5), 1–12. https://doi.org/10.1111/jfpp.13203 DOI: https://doi.org/10.1111/jfpp.13203
Che Sulaiman, I. S., Basri, M., Fard Masoumi, H. R., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1), 1-11. https://doi.org/10.1186/s13065-017-0285-1 DOI: https://doi.org/10.1186/s13065-017-0285-1
Chepkwony, S. C., Dumarçay, S., Chapuis, H., Kiprop, A., Gerardin, P., & Gerardin-Charbonnier, C. (2020). Geographic and intraspecific variability of mesquitol amounts in Prosopis juliflora trees from Kenya. European Journal of Wood and Wood Products, 78, 801-809. https://doi.org/10.1007/s00107-020-01535-8 DOI: https://doi.org/10.1007/s00107-020-01535-8
El‐Nashar, H. A., Eldahshan, O. A., Elshawi, O. E., & Singab, A. N. B. (2017). Phytochemical investigation, antitumor activity, and hepatoprotective effects of Acrocarpus fraxinifolius leaf extract. Drug Development Research, 78(5), 210-226. https://doi.org/10.1002/ddr.21395 DOI: https://doi.org/10.1002/ddr.21395
Erard, C., Fleming, T. H. & Kress, W. J. (2015). The ornaments of life. Coevolution and conservation in the tropics. The University of Chicago Press, Chicago & London, 2013. Revue d'Écologie (La Terre et La Vie), 70(1), 94-95.
García-Andrade, M., González-Laredo, R. F., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Rosales-Castro, M., & Medina-Torres, L. (2013). Mesquite leaves (Prosopis laevigata), a natural resource with antioxidant capacity and cardioprotection potential. Industrial Crops and Products, 44, 336-342. https://doi.org/10.1016/j.indcrop.2012.11.030 DOI: https://doi.org/10.1016/j.indcrop.2012.11.030
Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. https://doi.org/10.1021/jf030723c DOI: https://doi.org/10.1021/jf030723c
Ku, C. S., & Mun, S. P. (2008). Antioxidant properties of monomeric, oligomeric, and polymeric fractions in hot water extract from Pinus radiata bark. Wood Science and Technology, 42, 47-60. https://doi.org/10.1007/s00226-007-0150-9 DOI: https://doi.org/10.1007/s00226-007-0150-9
Liazid, A., Palma, M., Brigui, J., & Barroso, C. G. (2007). Investigation on phenolic compounds stability during microwave-assisted extraction. Journal of Chromatography A, 1140(1-2), 29-34. https://doi.org/10.1016/j.chroma.2006.11.040 DOI: https://doi.org/10.1016/j.chroma.2006.11.040
Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1-2), 95-111. https://doi.org/10.1016/j.chroma.2004.08.059 DOI: https://doi.org/10.1016/S0021-9673(04)01409-8
Napar, A. A., Bux, H., Zia, M. A., Ahmad, M. Z., Iqbal, A., Roomi, S., & Shah, S. H. (2012). Antimicrobial and antioxidant activities of Mimosaceae plants; Acacia modesta Wall (Phulai), Prosopis cineraria (Linn.) and Prosopis juliflora (Swartz). Journal of Medicinal Plants Research, 6(15), 2962-2970. https://doi.org/10.5897/JMPR11.1349 DOI: https://doi.org/10.5897/JMPR11.1349
Nath, K., Panchani, S. C., Patel, T. M., Dave, H. K., Patel, V. B., Tiwari, K. K., & Sahoo, N. (2020). Evaluation of Prosopis juliflora as a potential feedstock for the production of sodium lignosulfonate from the spent liquor of a laboratory digester. Journal of Wood Chemistry and Technology, 40(5), 331-347. https://doi.org/10.1080/02773813.2020.1809677 DOI: https://doi.org/10.1080/02773813.2020.1809677
Palacios Romero, A., Rodríguez Laguna, R., Hernández Flores, M. D. L. L., Jiménez Muñoz, E., & Tirado Torres, D. (2016). Potential distribution of Prosopis laevigata (Humb. et Bonpl. Ex Willd) MC Johnston Based on an ecological niche model. Revista Mexicana de Ciencias Forestales, 7(34), 35-46. https://doi.org/10.29298/rmcf.v7i34.81 DOI: https://doi.org/10.29298/rmcf.v7i34.81
Poudineh, Z., Amiri, R., & Noshin Mir, S. N. (2015). Total phenolic content, antioxidant, and antibacterial activities of seed and pod of Prosopis farcta from Sistan region, Iran. Azarian Journal of Agriculture, 2(2), 51-56
Rauf, A., Imran, M., Abu-Izneid, T., Patel, S., Pan, X., Naz, S., Silva, A., Saeed, F., & Suleria, H. A. R. (2019). Proanthocyanidins: A comprehensive review. Biomedicine & Pharmacotherapy, 116, 108999. https://doi.org/10.1016/j.biopha.2019.108999 DOI: https://doi.org/10.1016/j.biopha.2019.108999
Rosales-Castro, M., González-Laredo, R. F., Rivas-Arreola, M. J., & Karchesy, J. (2017). Chemical analysis of polyphenols with antioxidant capacity from Pinus durangensis bark. Journal of Wood Chemistry and Technology, 37(5), 393-404. https://doi.org/10.1080/02773813.2017.1310898 DOI: https://doi.org/10.1080/02773813.2017.1310898
Rosales-Castro, M., Honorato-Salazar, J. A., Reyes-Navarrete, M. G., & González-Laredo, R. F. (2015). Antioxidant phenolic compounds of ethanolic and aqueous extracts from Pink Cedar (Acrocarpus fraxinifolius Whight & Arn.) bark at two tree ages. Journal of Wood Chemistry and Technology, 35(4), 270-279. https://doi.org/10.1080/02773813.2014.946619 DOI: https://doi.org/10.1080/02773813.2014.946619
Siahpoosh, A., & Mehrpeyma, M. (2014). Antioxidant effects of Albizia lebbek and Prosopis julifora barks. International Journal of Biosciences, 5(9), 273-284. DOI: https://doi.org/10.12692/ijb/5.9.273-284
Sirmah, P., Dumarcay, S., Masson, E., & Gerardin, P. (2009). Unusual amount of (−)-mesquitol from the heartwood of Prosopis juliflora. Natural Product Research, 23(2), 183-189. https://doi.org/10.1080/14786410801940968 DOI: https://doi.org/10.1080/14786410801940968
Soto-García, M., & Rosales-Castro, M. (2016). Effect of solvent and solvent-to-solid ratio on the phenolic extraction and the antioxidant capacity of extracts from Pinus durangensis and Quercus sideroxyla bark. Maderas. Ciencia y Tecnología, 18(4), 701-714. https://doi.org/10.4067/S0718-221X2016005000061 DOI: https://doi.org/10.4067/S0718-221X2016005000061
Spigno, G., Tramelli, L., & De Faveri, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1), 200-208. https://doi.org/10.1016/j.jfoodeng.2006.10.021 DOI: https://doi.org/10.1016/j.jfoodeng.2006.10.021
Vázquez, G., Fontenla, E., Santos, J., Freire, M. S., González-Álvarez, J., & Antorrena, G. (2008). Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 28(3), 279-285. https://doi.org/10.1016/j.indcrop.2008.03.003 DOI: https://doi.org/10.1016/j.indcrop.2008.03.003
Villegas-Novoa, C., Gallegos-Infante, J. A., González-Laredo, R. F., García-Carrancá, A. M., Herrera-Rocha, K. M., Jacobo-Karam, J. S., Moreno-Jiménez, M. R., & Rocha-Guzmán, N. E. (2019). Acetone effects on Buddleja scordioides polyphenol extraction process and assessment of their cellular antioxidant capacity and anti-inflammatory activity. Medicinal Chemistry Research, 28, 2218-2231. https://doi.org/10.1007/s00044-019-02448-9 DOI: https://doi.org/10.1007/s00044-019-02448-9
Vuolo, M. M., Lima, V. S., & Junior, M. R. M. (2019). Phenolic compounds: Structure, classification, and antioxidant power. En M. R. Campos (Ed.), Bioactive compounds (pp. 33-50). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814774-0.00002-5 DOI: https://doi.org/10.1016/B978-0-12-814774-0.00002-5
Walaa, A., Hamed, A. R., El-Raey, M., Elshamy, A. I., & Abd-Ellatef, G. E. F. (2016). Antiproliferative, antioxidant and antimicrobial activities of phenolic compounds from Acrocarpus fraxinifolius. Journal of Chemical and Pharmaceutical Research, 8(3), 520-528.
Xavier, L., Barrenengoa, M., Dieste, A., Amilivia, A., Palombo, V., Sabag, M., & Zecchi, B. (2021). Valorization of Pinus taeda bark: Source of phenolic compounds, tannins and fuel: Characterization, extraction conditions and kinetic modelling. European Journal of Wood and Wood Products, 79, 1067-1085. https://doi.org/10.1007/s00107-021-01703-4 DOI: https://doi.org/10.1007/s00107-021-01703-4
Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762. https://doi.org/10.3390/molecules23040762 DOI: https://doi.org/10.3390/molecules23040762
Publicado
Cómo citar
-
Resumen375
-
PDF141
-
LENS2
Número
Sección
Licencia
Derechos de autor 2023 Madera y Bosques
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.