Comportamiento estacional de bacterias en sedimentos de mangle negro Avicennia germinans

Autores/as

DOI:

https://doi.org/10.21829/myb.2024.3042609

Palabras clave:

actividad celulolitica, comunidades bacterianas, ecosistemas costeros, Golfo de California, procesos biog, producción de hojarasca

Resumen

Las bacterias son esenciales para el funcionamiento del ecosistema de manglar. El objetivo de este estudio fue examinar el comportamien-to estacional de las densidades y la actividad celulolítica de bacterias heterótrofas en sedimentos de mangle negro Avicennia germinans y su relación con la producción de hojarasca, variables de agua y sedimento en una laguna costera semiárida subtropical. El estudio se realizó en la laguna costera El Soldado, ubicada en la región central de la costa este del Golfo de California. Se realizaron muestreos de agua, de sedimentos y de producción de hojarasca de Avicennia germinans durante un ciclo anual. En el agua se determinaron paráme-tros fisicoquímicos y nutrientes inorgánicos disueltos; en los sedimentos se evaluó la textura, materia orgánica, nutrientes inorgánicos disueltos, así como las densidades y actividad celulolítica de bacterias heterótrofas. Los resultados mostraron valores más altos de den-sidades y actividad celulolítica de bacterias heterótrofas en primavera (4.9 log UFC g-1; 7%) y verano (4.9 log UFC g-1; 94%), y valores más bajos en otoño (3.9 log UFC g-1; 27%) e invierno (3.9 log UFC g-1; 11%). En primavera y verano, con mayor densidad bacteriana, se observaron los valores más altos de temperatura del agua, amonio en agua, materia orgánica en sedimentos y hojarasca del manglar. Se concluye que las densidades y actividad celulolítica de bacterias en sedimentos de mangle negro de región árida exhiben un patrón estacional acoplado a los ingresos de materia orgánica y los cambios de la temperatura del agua. Esta evidencia es importante porque contribuye a entender el papel de las bacterias en el funcionamiento del ecosistema.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alejandra Piñón-Gimate,

Instituto Politécnico Nacional

Centro Interdisciplinario de Ciencias Marinas

Citas

Ali, H. (2021). Euglenoids in Haqlan Springs and Euphrates River at Hadithah City, Western Iraq. Biological and Applied Environmental Research, 5(1), 114–129. https://doi.org/10.51304/baer.2021.5.1.114 DOI: https://doi.org/10.51304/baer.2021.5.1.114

Alongi, D. M. (1988). Bacterial productivity and microbial biomass in tropical mangrove sediments. Microbial Ecology, 15(1), 59–79. https://doi.org/10.1007/BF02012952 DOI: https://doi.org/10.1007/BF02012952

Alongi, D. M. (2005). Mangrove-Microbe-Soil Relations. En E. Kristensen, R. R. Haese, & J. E. Kostka (Eds.), Interactions Between Macro- and Microorganisms in Marine Sediments (pp. 85–103). American Geophysical Union. https://doi.org/10.1029/CE060p0085 DOI: https://doi.org/10.1029/CE060p0085

Alongi, D. M. (2018). Impact of global change on nutrient dynamics in Mangrove Forests. Forests, 9(10), 1–13. https://doi.org/10.3390/f9100596 DOI: https://doi.org/10.3390/f9100596

Alongi, D. M., Boto, K., & Tirendi, F. (1989). Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical nearshore sediments. Marine Ecology Progress Series, 56, 133–144. https://doi.org/10.3354/meps056133 DOI: https://doi.org/10.3354/meps056133

Arreola-Lizárraga, J. A., Flores-Verdugo, F. J., & Ortega-Rubio, A. (2004). Structure and litterfall of an arid mangrove stand on the Gulf of California, Mexico. Aquatic Botany, 79(2), 137–143. https://doi.org/10.1016/j.aquabot.2004.01.012 DOI: https://doi.org/10.1016/j.aquabot.2004.01.012

Ávila-García, A., Arreola Lizárraga, J. A., Barraza-Guardado, R. H., Brito-Castillo, L., & Alcántara-Razo, E. (2023). Dinámica del oxígeno disuelto en el agua del estero El Soldado: un sistema prístino semi-árido subtropical. Áreas Naturales Protegidas Scripta, 9(3), 49–59. https://doi.org/10.18242/anpscripta.2023.09.09.03.0004

Bashan, Y., Holguin, G., & Lifshitz, R. (1993). Isolation and Characterization of Plant Growth-Promoting Rhizobacteria. En B. Glick (Ed.), Methods in plant molecular biology and biotechnology (1a ed., pp. 331–345). CRC press.

Behera, P., Mahapatra, S., Mohapatra, M., Kim, J. Y., Adhya, T. K., Raina, V., Suar, M., Pattnaik, A. K., & Rastogi, G. (2017). Salinity and macrophyte drive the biogeography of the sedimentary bacterial communities in a brackish water tropical coastal lagoon. Science of the Total Environment, 595, 472–485. https://doi.org/10.1016/j.scitotenv.2017.03.271 DOI: https://doi.org/10.1016/j.scitotenv.2017.03.271

Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22(2), 1–12. https://doi.org/10.1029/2007GB003052 DOI: https://doi.org/10.1029/2007GB003052

Capdeville, C., Pommier, T., Gervaix, J., Fromard, F., Rols, J. L., & Leflaive, J. (2019). Mangrove facies drives resistance and resilience of sediment microbes exposed to anthropic disturbance. Frontiers in Microbiology, 9, 337. https://doi.org/10.3389/fmicb.2018.03337 DOI: https://doi.org/10.3389/fmicb.2018.03337

Capone, D. G., & Carpenter, E. J. (1982). Nitrogen Fixation in the Marine Environment. Science, 217(4565), 1140–1142. https://doi.org/10.1126/science.217.4565.1140 DOI: https://doi.org/10.1126/science.217.4565.1140

Ceccon, D. M., Faoro, H., Lana, P. C., Souza, E. M., & Pedrosa, F. O. (2019). Metataxonomic and metagenomic analysis of mangrove microbiomes reveals community patterns driven by salinity and pH gradients in Paranaguá Bay, Brazil. Science of the Total Environment, 694, 133609. https://doi.org/10.1016/j.scitotenv.2019.133609 DOI: https://doi.org/10.1016/j.scitotenv.2019.133609

Chen, Q., Zhao, Q., Li, J., Jian, S., & Ren, H. (2016). Mangrove succession enriches the sediment microbial community in South China. Scientific Reports, 6(1), 27468. https://doi.org/10.1038/srep27468 DOI: https://doi.org/10.1038/srep27468

Chiu, C. Y., Lee, S. C., Chen, T. H., & Tian, G. (2004). Denitrification associated N loss in mangrove soil. Nutrient Cycling in Agroecosystems, 69(3), 185–189. https://doi.org/10.1023/B:FRES.0000035170.46218.92 DOI: https://doi.org/10.1023/B:FRES.0000035170.46218.92

Danovaro, R. (1996). Detritus-bacteria-meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW mediterranean. Marine Biology, 127(1), 1–13. https://doi.org/10.1007/BF00993638 DOI: https://doi.org/10.1007/BF00993638

Das, N., & Mandal, S. (2022). Microbial populations regulate greenhouse gas emissions in Sundarban mangrove ecosystem, India. Acta Ecologica Sinica, 42(6), 641–652. https://doi.org/10.1016/j.chnaes.2021.07.011 DOI: https://doi.org/10.1016/j.chnaes.2021.07.011

Dewiyanti, I., Darmawi, D., Muchlisin, Z. A., & Helmi, T. Z. (2024). Analyzing cellulolytic bacteria diversity in mangrove ecosystem soil using 16 svedberg ribosomal ribonucleic acid gene. Global Journal of Enviromental Science and Managment, 10(1), 51–68. https://doi.org/10.22034/gjesm.2024.01.05

Erazo, N. G., & Bowman, J. S. (2021). Sensitivity of the mangrove-estuarine microbial community to aquaculture effluent. iScience, 24(3), 102204. https://doi.org/10.1016/j.isci.2021.102204 DOI: https://doi.org/10.1016/j.isci.2021.102204

Filloux, J. H. (1973). Tidal Patterns and Energy Balance in the Gulf of California. Nature, 243(5404), 217–221. https://doi.org/10.1038/243217a0 DOI: https://doi.org/10.1038/243217a0

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México. http://www.librosoa.unam.mx/handle/123456789/1372

García-Martínez, Y., Heredia Abarca, G., Guzmán-Guillermo, J., Valenzuela, R., & Raymundo, T. (2021). Hongos asociados al mangle rojo Rhizophora mangle (Rhizophoraceae) en la Reserva de la Biosfera Isla Cozumel, Quintana Roo, México. Acta Botanica Mexicana, (128), e1792. https://dx.doi.org/10.21829/abm128.2021.1792 DOI: https://doi.org/10.21829/abm128.2021.1792

Gilmartin, M., & Revelante, N. (1978). The phytoplankton characteristics of the barrier island lagoons of the Gulf of California. Estuarine and Coastal Marine Science, 7(1), 29–47. https://doi.org/10.1016/0302-3524(78)90055-5 DOI: https://doi.org/10.1016/0302-3524(78)90055-5

Gladstone-Gallagher, R. V., Lundquist, C. J., & Pilditch, C. A. (2014). Mangrove (Avicennia marina subsp. australasica) litter production and decomposition in a temperate estuary. New Zealand Journal of Marine and Freshwater Research, 48(1), 24–37. https://doi.org/10.1080/00288330.2013.827124 DOI: https://doi.org/10.1080/00288330.2013.827124

Gobierno del Estado de Sonora (2006). Declaratoria que se establezca como área natural protegida bajo categoría zona sujeta a conservación ecológica donde se encuentra el Estero el Soldado y áreas aledañas. Boletín Oficial del Gobierno del Estado de Sonora.

Gonneea, M. E., Paytan, A., & Herrera-Silveira, J. A. (2004). Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science, 61(2), 211–227. https://doi.org/10.1016/j.ecss.2004.04.015 DOI: https://doi.org/10.1016/j.ecss.2004.04.015

Gonzalez-Acosta, B., Bashan, Y., Hernandez-Saavedra, N. Y., Ascencio, F., & De La Cruz-Agüero, G. (2006). Seasonal seawater temperature as the major determinant for populations of culturable bacteria in the sediments of an intact mangrove in an arid region. FEMS Microbiology Ecology, 55(2), 311–321. https://doi.org/10.1111/j.1574-6941.2005.00019.x DOI: https://doi.org/10.1111/j.1574-6941.2005.00019.x

Guereca-Hernández, L. P. (1994). Contribuciones para la caracterizacion ecologica del estero del soldado, Guaymas, Sonora, México [Tesis de maestría, Instituto Tecnologico y de Estudios Superiores de Monterrey].

Haldar, S., & Nazareth, S. W. (2018). Taxonomic diversity of bacteria from mangrove sediments of Goa: metagenomic and functional analysis. 3 Biotech, 8(10), 1–10. https://doi.org/10.1007/s13205-018-1441-6 DOI: https://doi.org/10.1007/s13205-018-1441-6

Hicks, N., Liu, X., Gregory, R., Kenny, J., Lucaci, A., Lenzi, L., Paterson, D. M., & Duncan, K. R. (2018). Temperature driven changes in benthic bacterial diversity influences biogeochemical cycling in coastal sediments. Frontiers in Microbiology, 9, 1730 https://doi.org/10.3389/fmicb.2018.01730 DOI: https://doi.org/10.3389/fmicb.2018.01730

Holguin, G., & Bashan, Y. (2007). La importancia de los manglares y su microbiología para el sostenimiento de las pesquerias costeras. En R. Ferrera-Cerrato, & A. Alarcon (Eds.), Microbiologia agrícola: Hongos, bacterias, micro y macrofauna, control biológico y planta-microorganismo (pp. 239-253). Editorial Trillas.

Holguin, G., Vazquez, P., & Bashan, Y. (2001). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biology and Fertility of Soils, 33(4), 265–278. https://doi.org/10.1007/s003740000319 DOI: https://doi.org/10.1007/s003740000319

Holm, G. E., & Sherman, J. M. (1921). Salt effects in bacterial growth I. Preliminary paper. Journal of bacteriology, 6(6), 511–519. https://doi.org/10.1128/jb.6.6.511-519.1921 DOI: https://doi.org/10.1128/jb.6.6.511-519.1921

Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2014). Coastal Blue Carbon. Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Conservation International - Intergovernmental Oceanographic Commission of UNESCO - International Union for Conservation of Nature. http://thebluecarboninitiative.org/manual/

Howarth, R. W. (1988). Nutrient Limitation of Net Primary Production in Marine Ecosystems. Annual Review of Ecology and Systematics, 19(1), 89–110. https://doi.org/10.1146/annurev.es.19.110188.000513 DOI: https://doi.org/10.1146/annurev.ecolsys.19.1.89

Howarth, R. W., Marino, R., Lane, J., & Cole, J. J. (1988). Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnology and Oceanography, 33(4), 669–687. https://doi.org/10.4319/lo.1988.33.4part2.0669 DOI: https://doi.org/10.4319/lo.1988.33.4_part_2.0669

Jackson, M. L. (1976). Análisis químico de suelos. Editorial Omega.

Kanerva, S., Kitunen, V., Kiikkilä, O., Loponen, J., & Smolander, A. (2006). Response of soil C and N transformations to tannin fractions originating from Scots pine and Norway spruce needles. Soil Biology and Biochemistry, 38(6), 1364–1374. https://doi.org/10.1016/j.soilbio.2005.10.013 DOI: https://doi.org/10.1016/j.soilbio.2005.10.013

Lai, J., Cheah, W., Palaniveloo, K., Suwa, R., & Sharma, S. (2022). A systematic review of the physicochemical and microbial diversity of well-preserved, restored, and disturbed mangrove forests: What is known and what is the way forward? Forests, 13(12), 1–23. https://doi.org/10.3390/f13122160 DOI: https://doi.org/10.3390/f13122160

Lewis, D. W., & McConchie, D. (1984). Practical sedimentology. Springer Nueva York. https://doi.org/10.1007/978-1-4615-2634-6 DOI: https://doi.org/10.1007/978-1-4615-2634-6

Liénart, C., Savoye, N., Conan, P., David, V., Barbier, P., Bichon, S., Charlier, K., Costes, L., Derriennic, H., Ferreira, S., Gueux, A., Hubas, C., Maria, E., & Meziane, T. (2020). Relationship between bacterial compartment and particulate organic matter (POM) in coastal systems: An assessment using fatty acids and stable isotopes. Estuarine, Coastal and Shelf Science, 239, 106720. https://doi.org/10.1016/j.ecss.2020.106720 DOI: https://doi.org/10.1016/j.ecss.2020.106720

Loría-Naranjo, M., Sibaja-Cordero, J. A., & Cortés, J. (2019). Mangrove Leaf Litter Decomposition in a Seasonal Tropical Environment. Journal of Coastal Research, 35(1), 122–129. https://doi.org/10.2112/JCOASTRES-D-17-00095.1 DOI: https://doi.org/10.2112/JCOASTRES-D-17-00095.1

Maie, N., Pisani, O., & Jaffe, R. (2008). Mangrove tannins in aquatic ecosystems: Their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnology and Oceanography, 53(1), 160–171. https://doi.org/10.4319/lo.2008.53.1.0160 DOI: https://doi.org/10.4319/lo.2008.53.1.0160

McKight, P. E. & Najab, J. (2010). Kruskal-Wallis Test. En: I. B. Weiner, & W. E. Craighead (Eds.) The Corsini Encyclopedia of Psychology (pp. 1-1). John Wiley & Sons, Inc.

https://doi.org/10.1002/9780470479216.corpsy0491 DOI: https://doi.org/10.1002/9780470479216.corpsy0491

Medina-Galván, J., Osuna-Martínez, C. C., Padilla-Arredondo, G., Frías-Espericueta, M. G., Barraza-Guardado, R. H., & Arreola-Lizárraga, J. A. (2021). Comparing the biogeochemical functioning of two arid subtropical coastal lagoons: the effect of wastewater discharges. Ecosystem Health and Sustainability, 7(1), 1892532. https://doi.org/10.1080/20964129.2021.1892532 DOI: https://doi.org/10.1080/20964129.2021.1892532

Moreno-Casasola, P., & Warner, B. G. (2009). Breviario para describir, observar y manejar humedales. Serie Costa Sustentable no 1. RAMSAR - Instituto de Ecología A.C. - Conanp - US Fish and Wildlife services - US State Department.

Moriarty, D. J. W., & Pollard, P. C. (1982). Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA. Marine Biology, 72(2), 165–173. https://doi.org/10.1007/BF00396917 DOI: https://doi.org/10.1007/BF00396917

Pepper, I. L., Gerba, C. P., & Gentry, T. J. (2015). Introduction to Environmental Microbiology. En I. L. Pepper, C. P. Gerba, & T. J. Gentry (Eds.), Environmental Microbiology (3a ed., pp. 3-8). Academic Press. https://doi.org/10.1016/B978-0-12-394626-3.00001-6 DOI: https://doi.org/10.1016/B978-0-12-394626-3.00001-6

Ramos e Silva, C. A., Oliveira, S. R., Rêgo, R. D. P., & Mozeto, A. A. (2007). Dynamics of phosphorus and nitrogen through litter fall and decomposition in a tropical mangrove forest. Marine Environmental Research, 64(4), 524–534. https://doi.org/10.1016/j.marenvres.2007.04.007 DOI: https://doi.org/10.1016/j.marenvres.2007.04.007

Reis, C. R. G., Nardoto, G. B., & Oliveira, R. S. (2017). Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant and Soil, 410(1–2), 1–19. https://doi.org/10.1007/s11104-016-3123-7 DOI: https://doi.org/10.1007/s11104-016-3123-7

Ribeiro, R. A., Rovai, A. S., Twilley, R. R., & Castañeda-Moya, E. (2019). Spatial variability of mangrove primary productivity in the neotropics. Ecosphere, 10(8), e02841. https://doi.org/10.1002/ecs2.2841 DOI: https://doi.org/10.1002/ecs2.2841

Rivera-Monroy, V. H., & Twilley, R. R. (1996). The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico). Limnology and Oceanography, 41(2), 284–296. https://doi.org/10.4319/lo.1996.41.2.0284 DOI: https://doi.org/10.4319/lo.1996.41.2.0284

Ruble, P. A. (1982). Bacteria and microbial distribution in estuarine sediments. En V. S. Kennedy (Ed.), Estuarine Comparisons (pp. 159–182). Academic Press. https://doi.org/10.1016/B978-0-12-404070-0.50016-8 DOI: https://doi.org/10.1016/B978-0-12-404070-0.50016-8

Saravanakumar, K., Anburaj, R., Gomathi, V., & Kathiresan, K. (2016). Ecology of soil microbes in a tropical mangrove forest of south east coast of India. Biocatalysis and Agricultural Biotechnology, 8, 73–85. https://doi.org/10.1016/j.bcab.2016.08.010 DOI: https://doi.org/10.1016/j.bcab.2016.08.010

Sherman, J. M., Holm, G. E., & Albus, W. R. (1922). Salt effects in bacterial growth III. Salt effects in relation to the lag period and velocity of growth. Journal of bacteriology, 7(6), 583–588. https://doi.org/10.1128/jb.7.6.583-588.1922 DOI: https://doi.org/10.1128/jb.7.6.583-588.1922

Sherman, J. M., & Holm, G. E. (1922). Salt Effects in bacterial growth II. The growth of bact. coli in relation to H-ion concentration. Journal of bacteriology, 7(5), 465–470. https://doi.org/10.1128/jb.7.5.465-470.1922 DOI: https://doi.org/10.1128/jb.7.5.465-470.1922

Shieh, W. Y., & Simidu, U. (1986). Heterotrophic bacteria associated with ealgrass zostera marina rhizosphere and their antibacterial activity. Bulletin of the Japanese Society of Scientific Fisheries, 52(12), 2143–2147. https://doi.org/10.2331/suisan.52.2143 DOI: https://doi.org/10.2331/suisan.52.2143

Solórzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography, 14(5), 799–801. https://doi.org/10.4319/lo.1969.14.5.0799 DOI: https://doi.org/10.4319/lo.1969.14.5.0799

Strickland, J. D., & Parson, T. R. (1972). A practical handbook of seawater analysis (2a ed., Vol. 167). Fisheries Research Board of Canada.

Suyama, K., Yamamoto, H., Naganawa, T., Iwata, T., & Komada, H. (1993). A plate count method for aerobic cellulose decomposers in soil by Congo red staining. Soil Science and Plant Nutrition, 39(2), 361–365. https://doi.org/10.1080/00380768.1993.10417008 DOI: https://doi.org/10.1080/00380768.1993.10417008

Torres, J. R., Sánchez-Mejía, Z. M., Arreola-Lizárraga, J. A., Galindo-Félix, J. I., Mascareño-Grijalva, J. J., & Rodríguez-Pérez, G. (2022). Environmental factors controlling structure, litter productivity, and phenology of mangroves in arid region of the Gulf of California. Acta Oecologica, 117, 103861. https://doi.org/10.1016/j.actao.2022.103861 DOI: https://doi.org/10.1016/j.actao.2022.103861

Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E., & Davis, S. (2019). Mangrove biogeochemistry at local to global scales using ecogeomorphic approaches. En G. M. E. Perillo, E. Wolanski, D. R. Cahoon, & C. S. Hopkinson (Eds.), Coastal Wetlands: An Integrated Ecosystem Approach (2a ed., pp. 717–785). Elsevier. https://doi.org/10.1016/B978-0-444-63893-9.00021-6 DOI: https://doi.org/10.1016/B978-0-444-63893-9.00021-6

Valle-Levinson, A., Delgado, J. A., & Atkinson, L. P. (2001). Reversing water exchange patterns at the entrance to a semiarid coastal lagoon. Estuarine, Coastal and Shelf Science, 53(6), 825–838. https://doi.org/10.1006/ecss.2000.0813 DOI: https://doi.org/10.1006/ecss.2000.0813

Van Der Valk, A. G., & Attiwill, P. M. (1984). Acetylene reduction in an Avicennia marina community in Southern Australia. Australian Journal of Botany, 32(2), 157–164. https://doi.org/10.1071/BT9840157 DOI: https://doi.org/10.1071/BT9840157

Walkley, A., & Black, I. A. (1934). An examination of Degtjaraff methods for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. http://dx.doi.org/10.1097/00010694-193401000-00003 DOI: https://doi.org/10.1097/00010694-193401000-00003

Yang, Z., Song, W., Zhao, Y., Zhou, J., Wang, Z., Luo, Y., Li, Y., & Lin, G. (2018). Differential responses of litter decomposition to regional excessive nitrogen input and global warming between two mangrove species. Estuarine, Coastal and Shelf Science, 214, 141–148. https://doi.org/10.1016/j.ecss.2018.09.018 DOI: https://doi.org/10.1016/j.ecss.2018.09.018

Zehr, J. P. (2011). Nitrogen fixation by marine cyanobacteria. Trends in Microbiology, 19(4), 162–173. https://doi.org/10.1016/j.tim.2010.12.004 DOI: https://doi.org/10.1016/j.tim.2010.12.004

Descargas

Publicado

2024-07-11

Cómo citar

Silva-Ontiveros, C. A., de los Santos Villalobos, S., Torres, J. R., Martínez-Porchas, M., Piñón-Gimate, A., & Arreola-Lizárraga, J. A. (2024). Comportamiento estacional de bacterias en sedimentos de mangle negro Avicennia germinans. Madera Y Bosques, 30(4), e304260. https://doi.org/10.21829/myb.2024.3042609
Metrics
Vistas/Descargas
  • Resumen
    618
  • PDF
    234
  • XML
    5

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.