Impactos negativos y positivos del cambio climático sobre los manglares: las dos caras de una costosa moneda
DOI:
https://doi.org/10.21829/myb.2024.3042623Palabras clave:
adaptación, conservación, emisiones de CO2, eventos climáticos extremos, migración, nivel del mar, nivel del suelo, patrones de precipitación, restauración, temperaturaResumen
Los manglares son uno de los ecosistemas más vulnerables y amenazados por los impactos asociados al cambio climático. Su ubicación en la zona costera de las regiones tropicales y subtropicales del planeta los hace testigos en primera línea de los efectos provocados por diversos factores de presión, los cuales se han exacerbado de forma acelerada en los últimos años, como el aumento de la temperatura terrestre y superficial del mar, la frecuencia de eventos climáticos extremos, y del nivel del mar. En el futuro, la magnitud de los impactos no será uniforme a escala global, tampoco la respuesta de las especies de manglar, que depende del contexto geomorfológico y también de la distribución espacial de estos factores y las interacciones entre ellos. Esta respuesta variable también está influenciada por aspectos más locales como el hidroperiodo, las características del suelo, las interacciones ecológicas y por las actividades antrópicas que están causando la degradación de los manglares y que reducen su resiliencia. El objetivo de esta revisión fue describir los cambios y respuestas que se podrían observar en los manglares por causa del cambio climático y presentar algunas evidencias para algunas regiones de México; finalmente se hacen sugerencias de algunas áreas donde se puede incrementar o fortalecer la investigación en el país, pues es necesario incrementar el conocimiento y usarlo para desarrollar estrategias de evaluación y monitoreo a nivel local, regional y nacional que permitan tomar decisiones más acertadas para el manejo y uso del ecosistema a corto, mediano y largo plazo.
Descargas
Citas
Aburto-Oropeza, O., Burelo-Ramos, C., Ezcurra, E., Ezcurra, P., Henriquez, C., Vanderplankf, S., & Zapata, F. (2021). Relict inland mangrove ecosystem reveals last interglacial sea levels. Proceedings of the National Academy of Sciences, 118(41), e2024518118. https://doi.org/10.1073/pnas.2024518118 DOI: https://doi.org/10.1073/pnas.2024518118
Alappatt, J. P. (2008). Structure and species diversity of mangrove ecosystem. En C. Sivaperuman, A. Velmurugan, A. K. Singh, e I. Jaisankar (Eds.), Biodiversity and Climate Change Adaptation in Tropical Islands (pp. 127-144). Academic Press. https://doi.org/10.1016/b978-0-12-813064-3.00005-3 DOI: https://doi.org/10.1016/B978-0-12-813064-3.00005-3
Adams, J. B., & Rajkaran, A. (2021). Changes in mangroves at their southernmost African distribution limit. Estuarine, Coastal and Shelf Science, 248, 107158. https://doi.org/10.1016/j.ecss.2020.107158 DOI: https://doi.org/10.1016/j.ecss.2020.107158
Alongi, D. (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29(3), 331-349. https://doi.org/10.1017/S0376892902000231 DOI: https://doi.org/10.1017/S0376892902000231
Alongi, D. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1-13. https://doi.org/10.1016/j.ecss.2007.08.024 DOI: https://doi.org/10.1016/j.ecss.2007.08.024
Alongi, D. (2015). The impact of climate change on mangrove forests. Current Climate Change Reports, 1(1), 30-39. https://doi.org/10.1007/s40641-015-0002-x DOI: https://doi.org/10.1007/s40641-015-0002-x
Asbridge, E., Lucas, R., Accad, A., & Dowling, R. (2015). Mangrove response to environmental changes predicted under varying climates: case studies from Australia. Current Forestry Reports, 1(3), 178-194. https://doi.org/10.1007/s40725-015-0018-4 DOI: https://doi.org/10.1007/s40725-015-0018-4
Ball, M. C., & Sobrado, M. A. (2002). Ecophysiology of mangroves: Challenges in linking physiological processes with patterns in forest structure. En M. C. Press, J. D. Scholes, & M. G. Barker (Eds.), Physiological plant ecology (pp. 331-346). The British Ecological Society - Blackwell Science.
Bolívar-Anillo, H. J., Anfuso, G., Chacón Abarca, S., Badillo-Romero, M. D., Villate-Daza, D. A., Serrano, M. C., & Sánchez-Moreno, H. (2020). Eventos naturales y actuaciones antrópicas: impactos sobre los bosques de manglar de América del Sur. Revista Costas, 2(1), 211-232. https://doi.org/10.26359/costas.1802 DOI: https://doi.org/10.26359/costas.1802
Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T., Spalding, M., Murray, N., & Rebelo, L. M. (2022). Global mangrove extent change 1996-2020: Global mangrove watch version 3.0. Remote Sensing, 14(15), 3657. https://doi.org/10.3390/rs14153657 DOI: https://doi.org/10.3390/rs14153657
Cahoon, D. R., Hensel, P., Rybczyk, J., McKee, K. L., Proffitt, C. E., & Perez, B. C. (2003). Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology, 91(6), 1093-1105. https://doi.org/10.1046/j.1365-2745.2003.00841.x DOI: https://doi.org/10.1046/j.1365-2745.2003.00841.x
Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., & Jin, F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111-116. https://doi.org/10.1038/nclimate2100 DOI: https://doi.org/10.1038/nclimate2100
Castañeda-Moya, E., Twilley, R. R., Rivera-Monroy, V. H., Zhang, K., Davis, S. E., & Ross, M. (2010). Sediment and nutrient deposition associated with Hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuaries and Coasts, 33(1), 45-58. https://doi.org/10.1007/s12237-009-9242-0 DOI: https://doi.org/10.1007/s12237-009-9242-0
Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., & Feller, I. C. (2014). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences, 111(2), 723-727. https://doi.org/10.1073/pnas.1315800111 DOI: https://doi.org/10.1073/pnas.1315800111
Chapman, S. K., Feller, I. C., Canas, G., Hayes, M. A., Dix, N., Hester, M., Morris, J., & Langley, J. A. (2021). Mangrove growth response to experimental warming is greatest near the range limit in northeast Florida. Ecology, 102(6), e03320. https://doi.org/10.1002/ecy.3320 DOI: https://doi.org/10.1002/ecy.3320
Cinco-Castro, S., & Herrera-Silveira, J. (2020). Vulnerability of mangrove ecosystems to climate change effects: The case of the Yucatan peninsula. Ocean y Coastal Management, 192, 105196. https://doi.org/10.1016/j.ocecoaman.2020.105196 DOI: https://doi.org/10.1016/j.ocecoaman.2020.105196
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [Conabio] (2023). Manglares. Conabio. https://www.biodiversidad.gob.mx/ecosistemas/manglares
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen. M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293-297. https://doi.org/10.1038/ngeo1123 DOI: https://doi.org/10.1038/ngeo1123
Doyle, T. W., Krauss, K. W., Conner, W. H., & From, A. S. (2010). Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. Forest Ecology and Management, 259(4), 770-777. https://doi.org/10.1016/j.foreco.2009.10.023 DOI: https://doi.org/10.1016/j.foreco.2009.10.023
Duke, N. C., Ball, M. C., & Ellison, J. C. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7(1), 27-47. https://doi.org/10.2307/2997695 DOI: https://doi.org/10.2307/2997695
Feller, I. C., & Sitnik, M. (1996). Mangrove ecology: A manual for a field course. Smithsonian Institution.
Friess, D. A., Krauss, K. W., Horstman, E. M., Balke, T., Bouma, T. J., Galli, D., & Webb, E. L. (2012). Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biological Reviews, 87(2), 346-366. https://doi.org/10.1111/j.1469-185X.2011.00198.x DOI: https://doi.org/10.1111/j.1469-185X.2011.00198.x
Friess, D. A. (2016). Ecosystem services and disservices of mangrove forests: Insights from historical colonial observations. Forests, 7(9), 183. https://doi.org/10.3390/f7090183 DOI: https://doi.org/10.3390/f7090183
Friess, D. A., Adame, M. F., Adams, J. B., & Lovelock, C. E. (2022). Mangrove forests under climate change in a 2°C world. Wiley Interdisciplinary Reviews: Climate Change, 13(4), e792. https://doi.org/10.1002/wcc.792 DOI: https://doi.org/10.1002/wcc.792
Gabler, C. A., Osland, M. J., Grace, J. B., Stagg, C. L., Day, R. H., Hartley, S. B., Enwright, N. M., From, A. S., McCoy, M. L., & McLeod, J. L. (2017). Macroclimatic change expected to transform coastal wetland ecosystems this century. Nature Climate Change, 7(2), 142-147. https://doi.org/10.1038/nclimate3203 DOI: https://doi.org/10.1038/nclimate3203
Gilman, E., Ellison, J. C., Duke, N. C., Field, C., & Fortuna, S. (2008). Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany, 89(2), 237-250. http://dx.doi.org/10.1016/j.aquabot.2007.12.009 DOI: https://doi.org/10.1016/j.aquabot.2007.12.009
Godoy, M. D., & De Lacerda, L. (2015). Mangroves response to climate change: a review of recent findings on mangrove extension and distribution. Anais da Academia Brasileira de Ciências, 87(2), 651-667. http://dx.doi.org/10.1590/0001-3765201520150055 DOI: https://doi.org/10.1590/0001-3765201520150055
Jennerjahn, T. C., Gilman, E., Krauss, K. W., Lacerda, L. D., Nordhaus, I., & Wolanski, E. (2017). Mangrove ecosystems under climate change. En V. Rivera-Monroy, S. Lee, E. Kristensen, & R. Twilley, (Eds.). Mangrove Ecosystems: A Global Biogeographic Perspective (pp. 211-244). Springer Science & Business Media. https://doi.org/10.1007/978-3-319-62206-4_7 DOI: https://doi.org/10.1007/978-3-319-62206-4_7
Koch, M. S., & Snedaker, S. C. (1997). Factors influencing Rhizophora mangle L. seedling development in Everglades carbonate soils. Aquatic Botany, 59(1-2), 87-98. https://doi.org/10.1016/S0304-3770(97)00027-2 DOI: https://doi.org/10.1016/S0304-3770(97)00027-2
Krauss, K. W., & Osland, M. J. (2020). Tropical cyclones and the organization of mangrove forests: a review. Annals of Botany, 125(2), 213-234. https://doi.org/10.1093/aob/mcz161 DOI: https://doi.org/10.1093/aob/mcz161
Krauss, K., McKee, K. L., Lovelock, C. E., Cahoon, D. R., Saintilan, N., Reef, R., & Chen, L. (2014). How mangrove forests adjust to rising sea level. New Phytologist, 202(1), 19-34. https://doi.org/10.1111/nph.12605 DOI: https://doi.org/10.1111/nph.12605
López-Medellín, X., Ezcurra, E., González-Abraham, C., Hak, J., Santiago, L. S., & Sickman, J. O. (2011). Oceanographic anomalies and sea level rise drive mangroves inland in the pacific coast of Mexico. Journal of Vegetation Science, 22(1), 143-151. https://doi.org/10.1111/j.1654-1103.2010.01232.x DOI: https://doi.org/10.1111/j.1654-1103.2010.01232.x
Lovelock, C. E., Cahoon, D. R., Friess, D. A., Guntenspergen, G. R., Krauss, K. W., Reef, R., Rogers, K., Saunders, M. L., Sidik F., Swales A., Saintilan, N., Thuyen L. X., & Triet, T. (2015). The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526(7574), 559-563. https://doi.org/10.1038/nature15538 DOI: https://doi.org/10.1038/nature15538
Lovelock, C. E., Feller, I. C., Adame, M. F., Reef, R., Penrose, H. M., Wei, L., & Ball, M.C. (2011). Intense storms and the delivery of materials that relieve nutrient limitations in mangroves of an arid zone estuary. Functional Plant Biology, 38(6), 514-522. https://doi.org/10.1071/FP11027 DOI: https://doi.org/10.1071/FP11027
Lu, W., Chen, L., Wang, W., Fung-Yee Tam, N., & Lin, G. (2013). Effects of sea level rise on mangrove Avicennia population growth, colonization and establishment: Evidence from a field survey and greenhouse manipulation experiment. Acta Oecologica, 49, 83-91. https://doi.org/10.1016/j.actao.2013.03.009 DOI: https://doi.org/10.1016/j.actao.2013.03.009
Lugo, A. E., & Snedaker, S. C. (1974). The ecology of mangroves. Annual Review of Ecology and Systematics, 5(1), 39-64. https://doi.org/10.1146/annurev.es.05.110174.000351 DOI: https://doi.org/10.1146/annurev.es.05.110174.000351
Manea, A., Geedicke, I., & Leishman, M. R. (2020). Elevated carbon dioxide and reduced salinity enhance mangrove seedling establishment in an artificial saltmarsh community. Oecologia, 192(1), 273-280. https://doi.org/10.1007/s00442-019-04563-1 DOI: https://doi.org/10.1007/s00442-019-04563-1
Martínez-Camilo, R., Gallardo-Cruz, J. A., Solórzano, J. V., Peralta-Carreta, C., Jiménez-López, D. A., Castillo-Acosta, O., Sánchez-González, M., & Meave, J. A. (2020). An assessment of the spatial variability of tropical swamp forest along a 300 km long transect in the Usumacinta River Basin, Mexico. Forests, 11(12), 1238. https://doi.org/10.3390/f11121238 DOI: https://doi.org/10.3390/f11121238
McIvor, A., Spencer T., Möller I., & Spalding, M. (2013) The response of mangrove soil surface elevation to sea level rise. Natural Coastal Protection Series: Report 3. Cambridge Coastal Research Unit Working Paper 42. The Nature Conservancy - Wetlands International. http://coastalresilience.org/science/mangroves/surface-elevation-and-sea-level-rise
McKee, K., Rogers, K., & Saintilan, N. (2012). Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate and sea level. En B. A. Middleton (Ed.), Global Change Ecology and Wetlands (pp. 63-96, Vol. 1). Springer Science & Business Media. (https://doi.org/10.1007/978-94-007-4494-3_2 DOI: https://doi.org/10.1007/978-94-007-4494-3_2
Mitra, A. (2020). Ecosystem services of mangroves: An overview. En A. Mitra. Mangrove Forests in India: Exploring Ecosystem Services (pp. 1-32). Springer Nature.. DOI: https://doi.org/10.1007/978-3-030-20595-9_1
Osorio-Olvera, L., Rioja-Nieto, R., Torres-Irineo, E., & Guerra-Martínez, F. (2023). Natural Protected Areas effect on the cover change rate of mangrove forests in the Yucatan Peninsula, Mexico. Wetlands, 43(5), 52. https://doi.org/10.1007/s13157-023-01697-0 DOI: https://doi.org/10.1007/s13157-023-01697-0
Polidoro, B. A., Carpenter, K. E., Collins, L, Duke, N. C., Ellison, A. M., Ellison, J. C., Farnswoth, E. J., Fernando, E. S., Kathiresan, K., Koedam, N. E., Livingstone, S. R., Miyagi, T., Moore, G. E., Nam, V. G., Ong, J. E., Primavera, J. H., Salmo III, S. G., Sanciangco, J. C., Sukardjo, S., …, & Yong, J. W. H. (2010). The loss of species: Mangrove extinction risk and geographic areas of global concern. PloS ONE, 5(4), e10095. https://doi.org/10.1371/journal.pone.0010095 DOI: https://doi.org/10.1371/journal.pone.0010095
Proffitt, C. E., & Travis, S. (2014). Red mangrove life history variables along latitudinal and anthropogenic stress gradients. Ecology and Evolution, 4(12), 2352-2359. https://doi.org/10.1002/ece3.1095 DOI: https://doi.org/10.1002/ece3.1095
Rahu, A., Das, S., Banerjee, K., & Mitra, A. (2012). Climate change impacts on Indian Sunderbans: a time series analysis (1924-2008). Biodiversity and Conservation, 21(5), 1289-1307. https://doi.org/10.1007/s10531-012-0260-z DOI: https://doi.org/10.1007/s10531-012-0260-z
Rashid, T. (2014) Holocene sea-level scenarios in Bangladesh. Springer Briefs in Oceanography. https://doi.org/10.1007/978-981-4560-99-3 DOI: https://doi.org/10.1007/978-981-4560-99-3
Record, S., Charney, N. D., Zakaria, R. M., & Ellison, A. M. (2013). Projecting global mangrove species and community distributions under climate change. Ecosphere, 4(3), 1-18. https://doi.org/10.1890/ES12-00296.1 DOI: https://doi.org/10.1890/ES12-00296.1
Reid, P. C., & Beaugrand, G. (2012). Global synchrony of an accelerating rise in sea surface temperature. Journal of the Marine Biological Association of the United Kingdom, 92(7), 1435-1450. https://doi.org/10.1017/S0025315412000549 DOI: https://doi.org/10.1017/S0025315412000549
Ribeiro, R. D. A., Rovai, A. S., Twilley, R. R., & Castañeda-Moya, E. (2019). Spatial variability of mangrove primary productivity in the neotropics. Ecosphere, 10(8), e02841. https://doi.org/10.1002/ecs2.2841 DOI: https://doi.org/10.1002/ecs2.2841
Rioja-Nieto, R., Barrera-Falcón, E., Torres-Irineo, E., Mendoza-González, G., & Cuervo-Robayo, P. C. (2017). Environmental drivers of decadal change of a mangrove forest in the North coast of the Yucatan peninsula, Mexico. Journal of Coastal Conservation, 21(1), 167-175. https://doi.org/10.1007/s11852-016-0486-0 DOI: https://doi.org/10.1007/s11852-016-0486-0
Saenger, P. (2002). Mangrove ecology, silviculture and conservation. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-015-9962-7
Saintilan, N., & Rogers, K. (2013) The significance and vulnerability of Australian saltmarshes: implications for management in a changing climate. Marine And Freshwater Research, 64(1), 66-79. https://doi.org/10.1071/MF12212 DOI: https://doi.org/10.1071/MF12212
Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A., & Krauss, K. W. (2014). Mangrove expansion and salt marsh decline at mangrove poleward limits. Global change biology, 20(1), 147-157. https://doi.org/10.1111/gcb.12341 DOI: https://doi.org/10.1111/gcb.12341
Sasmito, S. D., Murdiyarso, D., Friess, D. A., & Kurnianto, S. (2016). Can mangroves keep pace with contemporary sea level rise? A global data review. Wetlands Ecology and Management, 24(2), 263-278. https://doi.org/10.1007/s11273-015-9466-7 DOI: https://doi.org/10.1007/s11273-015-9466-7
Secretaría del Medio Ambiente y Recursos Naturales [Semarnat] (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación.
Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40-45. https://doi.org/10.1038/s41561-018-0279-1 DOI: https://doi.org/10.1038/s41561-018-0279-1
Smith III, T. J., Robblee, M. B., Wanless, H. R., & Doyle., T. W. (1994). Mangroves, hurricanes, and lightning strikes: Assessment of hurricane Andrew suggests an interaction across two differing scales of disturbance. BioScience, 44(4), 256-262. https://doi.org/10.2307/1312230 DOI: https://doi.org/10.2307/1312230
Smoak, J. M., Breithaupt, J. L., Smith III, T. J., & Sanders, C. J. (2013). Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. Catena, 104, 58-66. https://doi.org/10.1016/j.catena.2012.10.009 DOI: https://doi.org/10.1016/j.catena.2012.10.009
Snedaker, S. C. (1995). Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. Hydrobiologia, 295(1), 43-49. https://doi.org/10.1007/BF00029109 DOI: https://doi.org/10.1007/BF00029109
Snedaker, S. C., & Araújo, R. J. (1998). Stomatal conductance and gas exchange in four species of Caribbean mangroves exposed to ambient and increased CO2. Marine and Freshwater Research, 49(4), 325-327. https://doi.org/10.1071/MF98001 DOI: https://doi.org/10.1071/MF98001
Soares, M. (2009). A conceptual model for the responses of mangrove forests to sea level rise. Journal of Coastal Research, SI 56, 267-271. https://www.jstor.org/stable/25737579
Taillardat, P., Friess, D. A., & Lupascu, M. (2018). Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biology Letters, 14(10), 20180251. http://dx.doi.org/10.1098/rsbl.2018.0251 DOI: https://doi.org/10.1098/rsbl.2018.0251
Temmerman, S., Horstman, E. M., Krauss, K. W., Mullarney, J. C., Pelckmans, I., & Schoutens, K. (2023). Marshes and mangroves as nature-based coastal storm buffers. Annual Review of Marine Science, 15, 95-118. https://doi.org/10.1146/annurev-marine-040422-092951 DOI: https://doi.org/10.1146/annurev-marine-040422-092951
Thomas, N., Lucas, R., Bunting, P., Hardy, A., Rosenqvist, A., & Simard, M. (2017). Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE, 12(6), e0179302. https://doi.org/10.1371/journal.pone.0179302 DOI: https://doi.org/10.1371/journal.pone.0179302
Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 1098-1101. https://doi.org/10.1038/nature09329 DOI: https://doi.org/10.1038/nature09329
Torres-Fernández del Campo, J., Olvera-Vargas, M., Figueroa-Rangel, B. L., Cuevas-Guzmán, R., & Iñiguez-Dávalos, L. I. (2018). Patterns of spatial diversity and structure of mangrove vegetation in Pacific West-Central Mexico. Wetlands, 38(5), 919-931. https://doi.org/10.1007/s13157-018-1041-6 DOI: https://doi.org/10.1007/s13157-018-1041-6
Twilley, R. R., & Day, J. D. (2013). Mangrove wetlands. En J. W. Day, B. C. Crump, W. M. Kemp, & A. Yáñez-Arancibia (Eds.), Estuarine Ecology (pp.165-202). John Wiley & Sons. https://doi.org/10.1002/9781118412787.ch7 DOI: https://doi.org/10.1002/9781118412787.ch7
Twilley, R. R., & Rivera-Monroy, V. H. (2005). Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. Journal of Coastal Research, 40, 79-93. http://www.jstor.org/stable/25736617
Uddin, M. M., Abdul Aziz, A., & Lovelock, C. E. (2023). Importance of mangrove plantations for climate change mitigation in Bangladesh. Global Change Biology, 29(12), 3331-3346. https://doi.org/10.1111/gcb.16674 DOI: https://doi.org/10.1111/gcb.16674
Van der Stocken, T., Vanschoenwinkel, B., Carroll, D., Cavanaugh K. C., & Koedam N. (2022). Mangrove dispersal disrupted by projected changes in global seawater density. Nature Climate Change, 12(7), 685-691. https://doi.org/10.1038/s41558-022-01391-9 DOI: https://doi.org/10.1038/s41558-022-01391-9
Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M., & Koedam, N. (2019). Global-scale dispersal and connectivity in mangroves. Proceedings of the National Academy of Sciences, 116(3), 915-922. https://doi.org/10.1073/pnas.1812470116 DOI: https://doi.org/10.1073/pnas.1812470116
Varela, R., Lima, F. P., Seabra, R., Meneghesso, C., & Gómez-Gesteira, M. (2018). Coastal warming and wind-driven upwelling: A global analysis. Science of the Total Environment, 639, 1501-1511. https://doi.org/10.1016/j.scitotenv.2018.05.273 DOI: https://doi.org/10.1016/j.scitotenv.2018.05.273
Velázquez-Salazar, S., Rodríguez-Zúñiga, M. T., Alcántara-Maya, J. A., Villeda-Chávez, E., Valderrama-Landeros, L., Troche-Souza, C., Vázquez-Balderas, B., Pérez-Espinosa, I., Cruz-López, M. I., Ressl, R., De la Borbolla, D. V. G., Paz, O., Aguilar-Sierra, V., Hruby, F., & Muñoa-Coutiño J. H. (2021). Manglares de México. Actualización y análisis de los datos 2020. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
Ward, R. D., Friess, D. A., Day, R. H., & MacKenzie, R. A. (2016). Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosystem Health and Sustainability, 2(4), 11879021. https://doi.org/10.1002/ehs2.1211 DOI: https://doi.org/10.1002/ehs2.1211
Woodroffe, C. (1995). Response of tide-dominated mangrove shorelines in northern Australia to anticipated sea-level rise. Earth surface processes and landforms, 20(1), 65-85. https://doi.org/10.1002/esp.3290200107 DOI: https://doi.org/10.1002/esp.3290200107
Yáñez-Arancibia, A., Day, J., Twilley, R. R., & Day, R. H. (2014). Manglares: Ecosistema centinela frente al cambio climático, Golfo de México. Madera y Bosques, 20(Esp.), 39-75. https://doi.org/10.21829/myb.2014.200147 DOI: https://doi.org/10.21829/myb.2014.200147
Yáñez-Espinosa, L., & Flores, J. (2011). A review of sea-level rise effect on mangrove forest species: Anatomical and morphological modifications. En S. Casalengo (Ed.). Global warming impacts-Case studies on the economy, human health, and on urban and natural environments (pp. 253-276). InTechOpen. DOI: https://doi.org/10.5772/24662
Publicado
Cómo citar
-
Resumen709
-
PDF178
Número
Sección
Licencia
Derechos de autor 2024 Madera y Bosques
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.