Revisión cienciométrica (1990-2022) del ciclo del carbono y los flujos de CO2 y CH4 de manglares
DOI:
https://doi.org/10.21829/myb.2024.3042628Palabras clave:
cambio climático, carbono azul, ecosistemas costeros, emisiones de carbono, gases de efecto invernadero, humedalesResumen
Los manglares son ecosistemas costeros estratégicos frente al cambio climático, pero aún existen vacíos de conocimiento sobre la dinámica del gran reservorio de carbono que contienen. Se presenta un análisis cienciométrico sobre el ciclo del carbono en manglares, con especial interés en los flujos de CO2 y CH4. El término “carbono azul” es actualmente distintivo de la literatura científica, sobresaliendo como palabra clave en publicaciones de 380 revistas. La geografía de dicha revisión muestra que la mayoría de las publicaciones presentan resultados de estudios en sitios localizados en China (160), seguido por Indonesia (128), India (92), Australia (78) y EE. UU. (62). Las publicaciones con sitios de estudio en Latinoamérica representan 15% (114), en las que resaltan Brasil (52) y México (44). A pesar de que las publicaciones sobre flujos de carbono aumentaron en los últimos años, los estudios enfocados a los almacenes siguen siendo los más numerosos (68%). De las publicaciones sobre flujos, más de 70% registran flujos verticales (i.e. con la atmósfera) del suelo (inundado o no), y los sitios conservados fueron los más estudiados. Dada la necesidad imperante de comprender el potencial de mitigación del cambio climático que tienen los manglares, es importante incrementar el estudio de flujos laterales y verticales bajo un enfoque multiescalar y en diversos contextos costeros, dando especial atención a manglares en restauración bajo diferentes legados de degradación. Abordar estos vacíos en la comunicación escrita científica es crucial para la toma de decisiones sobre la conservación y restauración de manglares.
Descargas
Citas
Adame, M. F., Santini N. S., Torres-Talamante, O., & Rogers K. (2021). Mangrove sinkholes (cenotes) of the Yucatan Peninsula, a global hotspot of carbon sequestration. Biology Letters, 17, 20210037. https://doi.org/10.1098/rsbl.2021.0037 DOI: https://doi.org/10.1098/rsbl.2021.0037
Adame, M. F. (2021). Meaningful collaborations can end ‘helicopter research’. Nature, 10,. https://doi.org/10.1038/d41586-021-01795-1 DOI: https://doi.org/10.1038/d41586-021-01795-1
Adams, J. (2010). Plants and the carbon cycle. En J. Adams (Ed.), Vegetation-Climate Interaction (pp. 181-217). Springer Praxis Books. https://doi.org/10.1007/978-3-642-00881-8_7 DOI: https://doi.org/10.1007/978-3-642-00881-8_7
Allen, D. E., Dalal, R. C., Rennenberg, H., Meyer, R. L., Reeves, S., & Schmidt, S. (2007). Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biology and Biochemistry, 39(2), 622-631. https://doi.org/10.1016/j.soilbio.2006.09.013 DOI: https://doi.org/10.1016/j.soilbio.2006.09.013
Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual review of marine science, 6, 195-219. https://doi.org/10.1146/annurev-marine-010213-135020 DOI: https://doi.org/10.1146/annurev-marine-010213-135020
Alvarado-Barrientos, M. S., López-Adame, H., Lazcano-Hernández, H. E., Arellano-Verdejo, J., & Hernández-Arana, H. A. (2021). Ecosystem-atmosphere Exchange of CO2, Water, and Energy in a Basin Mangrove of the Northeastern Coast of the Yucatan Peninsula. Journal of Geophysical Research: Biogeosciences. 126, e2020JG005811. https://doi.org/10.1029/2020JG005811 DOI: https://doi.org/10.1029/2020JG005811
Barr, J. G., Engel, V., Fuentes, J. D., Zieman, J. C., O'Halloran, T. L., Smith, T. J., & Anderson, G. H. (2010). Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. Journal of Geophysical Research: Biogeosciences, 115, G02020. https://doi.org/10.1029/2009jg001186 DOI: https://doi.org/10.1029/2009JG001186
Barnes, J., Ramesh, R., Purvaja, R., Nirmal Rajkumar, A., Senthil Kumar, B., Krithika, K., Ravichandran, G., Uher, R., & Upstill-Goddard, R. (2006). Tidal dynamics and rainfall control N2O and CH4 emissions from a pristine mangrove creek. Geophysical Research Letters, 33(15), L15405. https://doi.org/10.1029/2006GL026829 DOI: https://doi.org/10.1029/2006GL026829
Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith II, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22(2), 1-12. https://doi.org/10.1029/2007GB003052 DOI: https://doi.org/10.1029/2007GB003052
Cadena, S., & Ochoa-Gómez, J. (2023) Mangroves: “superhero” ecosystems. Biodiversity, 10, 812948. http://doi.org/10.3389/frym.2022.812948 DOI: https://doi.org/10.3389/frym.2022.812948
Calderón-Aguilera, L. E., Rivera-Monroy, V. H., Porter-Bolland, L., Martínez-Yrízar, A., Ladah, L. B., Martínez-Ramos, M., Alcocer, J., Santiago-Pérez, A. L., Hernandez-Arana, H. A., Reyes-Gómez, V. M., Pérez-Salicrup, D. R., Díaz-Nuñez, V., Sosa-Ramírez, J., Herrera-Silveira, J., & Búrquez, A. (2012). An assessment of natural and human disturbance effects on Mexican ecosystems: current trends and research gaps. Biodiversity and Conservation, 21, 589-617. https://doi.org/10.1007/s10531-011-0218-6 DOI: https://doi.org/10.1007/s10531-011-0218-6
Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo III, S. G. (2017). Soil greenhouse gas fluxes in tropical mangrove forests and in land uses on deforested mangrove lands. Catena, 159, 60-69. https://doi.org/10.1016/j.catena.2017.08.005 DOI: https://doi.org/10.1016/j.catena.2017.08.005
Chauhan, R., Datta, A., Ramanathan, A. L., & Adhya, T. K. (2015). Factors influencing spatio-temporal variation of methane and nitrous oxide emission from a tropical mangrove of eastern coast of India. Atmospheric Environment, 107, 95-106. https://doi.org/10.1016/j.atmosenv.2015.02.006 DOI: https://doi.org/10.1016/j.atmosenv.2015.02.006
Chauhan, R., Datta, A., Ramanathan, A. L., & Adhya, T. K. (2017). Whether conversion of mangrove forest to rice cropland is environmentally and economically viable? Agriculture, Ecosystems & Environment, 246, 38-47. https://doi.org/10.1016/j.agee.2017.05.010 DOI: https://doi.org/10.1016/j.agee.2017.05.010
Chen, G. C., Tam, N. F. Y., Wong, Y. S., & Ye, Y. (2011). Effect of wastewater discharge on greenhouse gas fluxes from mangrove soils. Atmospheric Environment, 45(5), 1110-1115. https://doi.org/10.1016/j.atmosenv.2010.11.034 DOI: https://doi.org/10.1016/j.atmosenv.2010.11.034
Chen, H., Lu, W., Yan, G., Yang, S., & Lin, G. (2014). Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China. Biogeosciences, 11(19), 5323-5333. https://doi.org/10.5194/bg-11-5323-2014 DOI: https://doi.org/10.5194/bg-11-5323-2014
Chen, G., Bai, J., Bi, C., Wang, Y., & Cui, B. (2023). Global greenhouse gas emissions from aquaculture: a bibliometric analysis. Agriculture, Ecosystems & Environment, 348, 108405. https://doi.org/10.1016/j.agee.2023.108405 DOI: https://doi.org/10.1016/j.agee.2023.108405
Chuang, P. C., Young, M. B., Dale, A. W., Miller, L. G., Herrera-Silveira, J. A., & Paytan, A. (2017). Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico. Journal of Geophysical Research: Biogeosciences, 122(5), 1156-1174. https://doi.org/10.1002/2017JG003761 DOI: https://doi.org/10.1002/2017JG003761
Cinco-Castro, S., & Herrera-Silveira, J. (2020). Vulnerability of mangrove ecosystems to climate change effects: The case of the Yucatan Peninsula. Ocean & Coastal Management, 192, 105196. https://doi.org/10.1016/j.ocecoaman.2020.105196 DOI: https://doi.org/10.1016/j.ocecoaman.2020.105196
Cisneros-de la Cruz, D. J., Herrera-Silveira, J. A., Teutli-Hernández, C., Ramírez-García, S. A., Moreno-Martínez, A., Pérez-Martínez, O., Canul-Cabrera, A., Mendoza-Martínez, J., Montero-Muñoz, J., Paz-Pellat, F., & Roman-Cuesta, R. M. (2021) Manual para la medición, monitoreo y reporte del carbono y gases de efecto invernadero en manglares en restauración. Cifor - Cinvestav-IPN - UNAM-Sisal - PMC. https://www.cifor-icraf.org/publications/pdf_files/Reports/Manual-SWAMP-sp.pdf
Cui, X., Liang, J., Lu, W., Chen, H., Liu, F., Lin, G., Xu, F., Luo, J., & Lin, G. (2018). Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China. Agricultural and Forest Meteorology, 249, 71-80. https://doi.org/10.1016/j.agrformet.2017.11.019 DOI: https://doi.org/10.1016/j.agrformet.2017.11.019
Cummings, A. R., & Shah, M. (2017). Mangroves in the global climate and environmental mix. Geography Compass, 12, 1-17. https://doi.org/10.1111/gec3.12353 DOI: https://doi.org/10.1111/gec3.12353
Dados, N. & Connell, R. (2012). The Global South. Contexts, 11(1), 12-13. https://doi.org/10.1177/1536504212436479 DOI: https://doi.org/10.1177/1536504212436479
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293-297. https://doi.org/10.1038/ngeo1123 DOI: https://doi.org/10.1038/ngeo1123
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. https://doi.org/10.1038/nclimate1970 DOI: https://doi.org/10.1038/nclimate1970
Duarte-de Paula Costa, M., & Macreadie, P. I. (2022). The Evolution of Blue Carbon Science. Wetlands, 42(8), 109. https://doi.org/10.1007/s13157-022-01628-5 DOI: https://doi.org/10.1007/s13157-022-01628-5
Dutta, M. K., Chowdhury, C., Jana, T. K., & Mukhopadhyay, S. K. (2013). Dynamics and exchange fluxes of methane in the estuarine mangrove environment of the Sundarbans, NE coast of India. Atmospheric Environment, 77, 631-639. https://doi.org/10.1016/j.atmosenv.2013.05.050 DOI: https://doi.org/10.1016/j.atmosenv.2013.05.050
Drubin, D. G., & Kellogg, D. R. (2012). English as the universal language of science: opportunities and challenges. Molecular Biology of the Cell, 23(8), 1399. https://doi.org/10.1091/mbc.e12-02-0108 DOI: https://doi.org/10.1091/mbc.e12-02-0108
Elsner, J. B., Kossin, J. P., & Jagger, T. H. (2008). The increasing intensity of the strongest tropical cyclones. Nature, 455(7209), 92-95. https://doi.org/10.1038/nature07234 DOI: https://doi.org/10.1038/nature07234
Fang, J., Tang, Y., & Son, Y. (2010). Why are East Asian ecosystems important for carbon cycle research? Science China. Life Sciences, 53(7), 753-756. https://doi.org/10.1007/s11427-010-4032-2 DOI: https://doi.org/10.1007/s11427-010-4032-2
Gao, G. F., Zhang, X. M., Li, P. F., Simon, M., Shen, Z. J., Chen, J., Gao, C. H., & Zheng, H. L. (2020). Examining soil carbon gas (CO2, CH4) emissions and the effect on functional microbial abundances in the Zhangjiang Estuary Mangrove Reserve. Journal of Coastal Research, 36(1), 54-62. https://doi.org/10.2112/JCOASTRES-D-18-00107.1 DOI: https://doi.org/10.2112/JCOASTRES-D-18-00107.1
Gao, C. H., Zhang, S., Ding, Q. S., Wei, M. Y., Li, H., Li, J., Wen, C., Gao, G. F., Liu, Y., Zhou, J. J., Zhang, J. Y., You, Y. P., & Zheng, H. L. (2021). Source or sink? A study on the methane flux from mangroves stems in Zhangjiang estuary, southeast coast of China. Science of The Total Environment, 788, 147782. https://doi.org/10.1016/j.scitotenv.2021.147782 DOI: https://doi.org/10.1016/j.scitotenv.2021.147782
Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154-159. https://doi.org/10.1111/j.1466-8238.2010.00584.x DOI: https://doi.org/10.1111/j.1466-8238.2010.00584.x
Gnanamoorthy, P., Selvam, V., Burman, P. K. D., Chakraborty, S., Karipot, A., Nagarajan, R., Ramasubramanian, R., Song, Q., Zhang, Y., & Grace, J. (2020). Seasonal variations of net ecosystem (CO2) exchange in the Indian tropical mangrove forest of Pichavaram. Estuarine, Coastal and Shelf Science, 243, 106828. https://doi.org/10.1016/j.ecss.2020.106828 DOI: https://doi.org/10.1016/j.ecss.2020.106828
Granados-Martínez, K. P., Yépez, E. A., Sánchez-Mejía, Z. M., Gutiérrez-Jurado, H. A., & Méndez-Barroso, L. A. (2021). Environmental controls on the temporal evolution of energy and CO2 fluxes on an arid mangrove of Northwestern Mexico. Journal of Geophysical Research: Biogeosciences, 126(7), e2020JG005932. https://doi.org/10.1029/2020JG005932 DOI: https://doi.org/10.1029/2020JG005932
Hernández, M. E. (2010). Suelos de humedales como sumideros de carbono y fuentes de metano. Terra Latinoamericana, 28(2), 139-147.
Hernández, M. E., & Junca-Gómez, D. (2020). Carbon stocks and greenhouse gas emissions (CH4 and N2O) in mangroves with different vegetation assemblies in the central coastal plain of Veracruz Mexico. Science of The Total Environment, 741, 1-36. https://doi.org/10.1016/j.scitotenv.2020.140276 DOI: https://doi.org/10.1016/j.scitotenv.2020.140276
Herrera-Silveira, J. A., & Teutli-Hernández, C. (2017). Carbono azul, manglares y política pública. Elementos para Políticas Públicas, 1(1), 43-52.
Ho, Y. S., & Mukul, S. A. (2021). Publication performance and trends in mangrove forests: A bibliometric analysis. Sustainability, 13(22), 12532. https://doi.org/10.3390/su132212532 DOI: https://doi.org/10.3390/su132212532
Hook, D., Porter, S., & Herzog, C. (2018). Dimensions: Building Context for Search and Evaluation. Frontiers in Research Metrics Analytics, 3, 23. https://doi.org/10.3389/frma.2018.00023 DOI: https://doi.org/10.3389/frma.2018.00023
Huxham, M., Dencer-Brown, A., Diele, K., Kathiresan, K., Nagelkerken, I., & Wanjiru, C. (2017). Mangroves and people: local ecosystem services in a changing climate. En V. Rivera-Monroy, S. Lee, E. Kristensen, & R. Twilley (Eds), Mangrove Ecosystems: A Global Biogeographic Perspective. Structure, Function, and Services, (pp. 245-274). https://doi.org/10.1007/978-3-319-62206-4_8 DOI: https://doi.org/10.1007/978-3-319-62206-4_8
Intergovernmental Panel on Climate Change [IPCC] (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157896 DOI: https://doi.org/10.1017/9781009157896
Jennerjahn, T. C. (2020). Relevance and magnitude of 'Blue Carbon' storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks. Estuarine, Coastal and Shelf Science, 247, 107027. https://doi.org/10.1016/j.ecss.2020.107027 DOI: https://doi.org/10.1016/j.ecss.2020.107027
Jiang, L., Yang, T., & Yu, J. (2022). Global trends and prospects of blue carbon sinks: a bibliometric analysis. Environmental Science Pollution Research, 29(44), 65924-65939. https://doi.org/10.1007/s11356-022-22216-4 DOI: https://doi.org/10.1007/s11356-022-22216-4
Keenan, T. F., & Williams, C. A. (2018). The terrestrial carbon sink. Annual Review of Environment and Resources, 43(1), 219-243. https://doi.org/10.1146/annurev-environ-102017-030204 DOI: https://doi.org/10.1146/annurev-environ-102017-030204
Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2), 201-219. https://doi.org/10.1016/j.aquabot.2007.12.005 DOI: https://doi.org/10.1016/j.aquabot.2007.12.005
Kristensen, E., Valdemarsen, T., Moraes, P. C., Güth, A. Z., Sumida, P. Y., & Quintana, C. O. (2022). Pneumatophores and crab burrows increase CO2 and CH4 emission from sediments in two Brazilian fringe mangrove forests. Marine Ecology Progress Series, 698, 29-39. https://doi.org/10.3354/meps14153 DOI: https://doi.org/10.3354/meps14153
Krithika, K., Purvaja, R., & Ramesh, R. (2008). Fluxes of methane and nitrous oxide from an Indian mangrove. Current Science, 94(2), 218-224. http://www.jstor.org/stable/24101861
Leopold, A., Marchand, C., Renchon, A., Deborde, J., Quiniou, T., & Allenbach, M. (2016). Net ecosystem CO2 exchange in the "Coeur de Voh" mangrove, New Caledonia: Effects of water stress on mangrove productivity in a semi-arid climate. Agricultural and Forest Meteorology, 223, 217-232. https://doi.org/10.1016/j.agrformet.2016.04.006 DOI: https://doi.org/10.1016/j.agrformet.2016.04.006
Li, M. S., & Lee, S. Y. (1997). Mangroves of China: a brief review. Forests Ecology and Management, 96(3), 241-259. https://doi.org/10.1016/S0378-1127(97)00054-6 DOI: https://doi.org/10.1016/S0378-1127(97)00054-6
Litmaps Ltd. (2023). Litmaps. https://www.litmaps.com/
Liu, J., & Lai, D. Y. F. (2019). Subtropical mangrove wetland is a stronger carbon dioxide sink in the dry than wet seasons. Agricultural and Forest Meteorology, 278, 107644. https://doi.org/10.1016/j.agrformet.2019.107644 DOI: https://doi.org/10.1016/j.agrformet.2019.107644
Lu, W., Xiao, J., Liu, F., Zhang, Y., Liu, C., & Lin, G. (2017). Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: A meta-analysis of eddy covariance data. Global Change Biology, 23(3), 1180-1198. https://doi.org/10.1111/gcb.13424 DOI: https://doi.org/10.1111/gcb.13424
Ma, W., Li, H., Zhang, W., Shen, C., Wang, L., Li, Y., Li, Q., & Wang, Y. (2020). TiO2 nanoparticles accelerate methanogenesis in mangrove wetlands sediment. Science of the Total Environment, 713, 136602. https://doi.org/10.1016/j.scitotenv.2020.136602 DOI: https://doi.org/10.1016/j.scitotenv.2020.136602
Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., Kelleway, J. J., Kennedy, H., Kuwae, T., Lavery, P., Lovelock, C. E., Smale, D. A., Apostolaki, E. T., Atwood, T. B., Baldock, J., Bianchi, T. S., Chmura, G. L., Eyre, B. D., Fourqurean, J. W., & Duarte, C. M. (2019). The future of Blue Carbon science. Nature communications, 10(1), 3998. https://doi.org/10.1038/s41467-019-11693-w DOI: https://doi.org/10.1038/s41467-019-11693-w
Macreadie, P. I., Costa, M. D. P., Atwood, T. B., Friess, D. A., Kelleway, J. J., Kennedy, H., Lovelock, C. E., Serrano, O., & Duarte, C. M. (2021). Blue carbon as a natural climate solution. Nature Reviews Earth & Environment, 2(12), 826-839. https://doi.org/10.1038/s43017-021-00224-1 DOI: https://doi.org/10.1038/s43017-021-00224-1
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552-560. https://doi.org/10.1890/110004 DOI: https://doi.org/10.1890/110004
Menéndez, P., Losada, I. J., Torres-Ortega, S., Narayan, S., & Beck, M. W. (2020). The global flood protection benefits of mangroves. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-61136-6 DOI: https://doi.org/10.1038/s41598-020-61136-6
Michán, L., & Muñoz-Velasco, I. (2013). Cienciometría para ciencias médicas: definiciones, aplicaciones y perspectivas. Investigación en educación médica, 2(6), 100-106. http://doi.org/10.1016/S2007-5057(13)72694-2 DOI: https://doi.org/10.1016/S2007-5057(13)72694-2
Millán, J. D., Polanco, F., Ossa, J. C., Béria, J., & Cudina, J. N. (2017). La cienciometría, su método y su filosofía: Reflexiones epistémicas de sus alcances en el siglo XXI. Revista Guillermo de Ockham, 15(2), 17-27. https://doi.org/10.21500/22563202.3492 DOI: https://doi.org/10.21500/22563202.3492
Moreno-Casasola, P. (2016). Servicios ecosistémicos de las selvas y bosques costeros de Veracruz. INECOL - ITTO - CONAFOR - INECC.
Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., & Grimsditch, G. (2009). Blue carbon: the role of healthy oceans in binding carbon. A rapid Response Assessment. GRID-Arendal.
Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Siffleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. W., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., & Baldera, A. (2012) Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLOS ONE, 7(9), e43542. https://doi.org/10.1371/journal.pone.0043542 DOI: https://doi.org/10.1371/journal.pone.0043542
Quevedo, J. M. D., Uchiyama, Y., & Kohsaka, R. (2023). Progress of blue carbon research: 12 years of global trends based on content analysis of peer-reviewed and ‘gray literature’ documents. Ocean & Coastal Management, 236, 106495. https://doi.org/10.1016/j.ocecoaman.2023.106495 DOI: https://doi.org/10.1016/j.ocecoaman.2023.106495
Rivera-Monroy, V. H., Castañeda-Moya, E., Barr, J. G., Engel, V., Fuentes, J. D., Troxler, T. G., Twilley, R. R., Bouillon, S., Smith III, T. J., & O'Halloran, T. L. (2013). Current methods to evaluate net primary production and carbon budgets in mangrove forests. En R. D. DeLaune, K. R. Reddy, C. J. Richardson, & J. P. Megonigal (Eds.), Methods in Biogeochemistry of Wetlands (pp. 243-288). American Society of Agronomy. DOI: https://doi.org/10.2136/sssabookser10.c14
Rodda, S. R., Thumaty, K. C., Fararoda, R., Jha, C. S., & Dadhwal, V. K. (2022). Unique characteristics of ecosystem CO2 exchange in Sundarban mangrove forest and their relationship with environmental factors. Estuarine, Coastal and Shelf Science, 267, 107764. https://doi.org/10.1016/j.ecss.2022.107764 DOI: https://doi.org/10.1016/j.ecss.2022.107764
Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H., & Eyre, B. D. (2018). Methane emissions partially offset “blue carbon” burial in mangroves. Science Advances, 4(6), eaao4985. https//doi.org/ 10.1126/sciadv.aao4985 DOI: https://doi.org/10.1126/sciadv.aao4985
Rosentreter, J. A., Laruelle, G. G., Bange, H. W., Bianchi, T. S., Busecke, J. J., Cai, W. J., Eyre, B. D., Forbrich, I., Kwon, E. Y., Maavara, T., Moosdorf, N., Najjar, R. G., Sarma, V. V. S. S., Dam, B. V., & Regnier, P. (2023). Coastal vegetation and estuaries are collectively a greenhouse gas sink. Nature Climate Change, 13(6), 579-587. https://doi.org/10.1038/s41558-023-01682-9 DOI: https://doi.org/10.1038/s41558-023-01682-9
Sheng, N., Wu, F., Liao, B., & Xin, K. (2021). Methane and carbon dioxide emissions from cultivated and native mangrove species in Dongzhai Harbor, Hainan. Ecological Engineering, 168, 106285. https://doi.org/10.1016/j.ecoleng.2021.106285 DOI: https://doi.org/10.1016/j.ecoleng.2021.106285
Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: An analysis of Global Change (3a ed.). Academic Press.
Tarin-Terrazas, T., Alvarado-Barrientos, M. S., Cueva-Rodríguez, A., Hinojo-Hinojo, C., González del Castillo, E., Sánchez-Mejía, Z., Villareal-Rodríguez, S., & Yépez-González, E. A. (2022). MexFlux: sinergias para diseñar, evaluar, e informar soluciones climáticas naturales. Elementos para Políticas Públicas, 4(2), 99-116. https://www.elementospolipub.org/ojs/index.php/epp/article/view/37
The World Bank Group (2024). World Bank Open Data. https://data.worldbank.org/
Twilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution. 64, 265-288. https://doi.org/10.1007/BF00477106 DOI: https://doi.org/10.1007/BF00477106
Uuh-Sonda, J., Sánchez-Mejía, Z., & Figueroa Espinoza, B. (2023). Análisis de flujos ecohidrológicos ecosistema-atmósfera en un manglar de la Península de Yucatán. En A. Aguilar, E. Yepez, J. García, J. Torres, J. Arreola, R. Barraza, & Z. Sánchez (Comp.). Memorias arbitradas, VI Congreso Mexicano de Ecosistemas de Manglar, (p. 56.). Comité Mexicano de Manglares. https://www.biodiversidad.gob.mx/media/1/ecosistemas/smmanglares/files/MEMORIAS_VI_CONGRESO_MANGLARES_2023.pdf
Vargas-Terminel, M. L., Rodríguez, J. C., Yépez, E. A., Robles-Zazueta, C. A., Watts, C., Garatuza-Payán, J., Vargas, R., & Sanchez-Mejia, Z. M. (2023). Ecosystem-atmosphere CO2 exchange from semiarid mangroves in the Gulf of California. Journal of Arid Environments, 208, 104872. https://doi.org/10.1016/j.jaridenv.2022.104872 DOI: https://doi.org/10.1016/j.jaridenv.2022.104872
Wang, W., Fu, H., Lee, S. Y., Fan, H., & Wang, M. (2020). Can strict protection stop the decline of mangrove ecosystems in China? From rapid destruction to rampant degradation. Forests, 11(1), 55. https://doi.org/10.3390/f11010055 DOI: https://doi.org/10.3390/f11010055
Wedding, L. M., Moritsch, M., Verutes, G., Arkema, K., Hartge, E., Reiblich, J., Douglass, J., Taylor, S., & Strong, A. L. (2021). Incorporating blue carbon sequestration benefits into sub-national climate policies. Global Environmental Change, 69, 102206. https://doi.org/10.1016/j.gloenvcha.2020.102206 DOI: https://doi.org/10.1016/j.gloenvcha.2020.102206
Xu, S., Sheng, C., & Tian, C. (2020). Changing soil carbon: influencing factors, sequestration strategy and research direction. Carbon balance and Management, 15(1), 1-9. https://doi.org/10.1186/s13021-020-0137-5 DOI: https://doi.org/10.1186/s13021-020-0137-5
Yang, W. B., Yuan, C. S., Huang, B. Q., Tong, C., & Yang, L. (2018). Emission characteristics of greenhouse gases and their correlation with water quality at an estuarine mangrove ecosystem–the application of an in-situ on-site NDIR monitoring technique. Wetlands, 38(4), 723-738. https://doi.org/10.1007/s13157-018-1015-8 DOI: https://doi.org/10.1007/s13157-018-1015-8
Yin, S., Wang, J., & Zeng, H. (2023). A bibliometric study on carbon cycling in vegetated blue carbon ecosystems. Environmental Science and Pollution Research, 30(3), 74691–74708. https://doi.org/10.1007/s11356-023-27816-2 DOI: https://doi.org/10.1007/s11356-023-27816-2
Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. En M. R. Rahimpour, M. Farsi, & M. A. Makarem (Eds.), Advances in carbon capture (pp. 3-28). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-819657-1.00001-3
Yu, X., Yang, X., Wu, Y., Peng, Y., Yang, T., Xiao, F., Zhong, Q., Xu, K., Shu, L., He, Q., Tian, Y., Yan, Q., Wang, C., Wu, B., & He, Z. (2020). Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biology and Biochemistry, 144, 107775. https://doi.org/10.1016/j.soilbio.2020.107775 DOI: https://doi.org/10.1016/j.soilbio.2020.107775
Zhao, X., Wang, C., Li, T., Zhang, C., Fan, X., Zhang, Q., Zhang, Q., Chen, X., Zou, X., Shen, C., Tang, Y., & Qin, Z. (2022). Net CO2 and CH4 emissions from restored mangrove wetland: New insights based on a case study in estuary of the Pearl River, China. Science of The Total Environment, 811, 151619. https://doi.org/10.1016/j.scitotenv.2021.151619 DOI: https://doi.org/10.1016/j.scitotenv.2021.151619
Zhi, W., Yuan, L., Ji, G. Liu, Y., Cai, Z., & Chen, X. (2015). A bibliometric review on carbon cycling research during 1993-2013. Environmental Earth Sciences, 74(7), 6065-6075. https://doi.org/10.1007/s12665-015-4629-7 DOI: https://doi.org/10.1007/s12665-015-4629-7
Zhu, X., Sun, C., & Qin, Z. (2021). Drought-induced salinity enhancement weakens mangrove greenhouse gas cycling. Journal of Geophysical Research: Biogeosciences, 126, e2021JG006416. https://doi.org/10.1029/2021JG006416 DOI: https://doi.org/10.1029/2021JG006416
Zygomatic (2024). WorldClouds. https://www.wordclouds.com
Publicado
Cómo citar
-
Resumen665
-
PDF258
Número
Sección
Licencia
Derechos de autor 2024 Madera y Bosques
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.