Variation throughout the tree stem in the physical-mechanical properties of the wood
DOI:
https://doi.org/10.21829/myb.2013.192342Palabras clave:
Fir, longitudinal direction, mechanical properties, physical properties, radial directionResumen
This study analyses the variation of main physical-mechanical properties of wood along the longitudinal and radial directions of the tree for Abies alba Mill. growing in the Spanish Pyrenees. Small
clear specimens were used to study the properties of volumetric shrinkage (VS), density (ρ), hardness (H), bending strength (MOR), modulus of elasticity (MOE), maximum compressive strength parallel to the grain (MCS) and impact strength (K). Several models of properties variation in the longitudinal and radial directions were analyzed. Main trends of variation of properties throughout the tree stem were identified although none of them could be fitted to predictive statistical models. Along the longitudinal direction, the properties studied followed a downward trend from the base to the crown, which was not significant in all cases, indicating that no differences in quality existed. Throughout the radial direction
the trend is upward for the first 40-50 growth rings, after which it slopes downwards, more gently at first until rings 70-75 and then more steeply. This behaviour is related to variation in wood structure from the pith to the bark, depending on whether the wood is juvenile, sapwood or heartwood, and to wood maturity
and microfibril angle. Authors encourage carrying further studies on other populations of A. alba in the Spanish Pyrenees to check if the trends found in this study apply to other provenances.
Descargas
Citas
Anon, J. 1961. Forest Products Laboratory’s
toughness testing machine. Forest
Products Laboratory Report No. 1308.
Forest Products Laboratory, Madison
(WI), USA. 29 pp.
AENOR (Asociación Española de Normalización).
a. UNE 56531. Características
físico-mecánicas de la madera. Determinación
del peso específico. Madrid.
AENOR (Asociación Española de Normalización).
b. UNE 56533. Características
físico-mecánicas de la
madera. Determinación de las contracciones
lineal y volumétrica.
Madrid.
AENOR (Asociación Española de Normalización).
c. UNE 56534. Características
físico-mecánicas de la
madera. Determinación de la dureza.
Madrid.
AENOR (Asociación Española de Normalización).
d. UNE 56536. Características
físico-mecánicas de la
madera. Determinación de la resistencia
a la flexión dinámica. Madrid.
AENOR (Asociación Española de Normalización).
e. UNE 56535. Características
físico-mecánicas de la
madera. Determinación de la resistencia
a la compresión axial. Madrid.
AENOR (Asociación Española de Normalización).
UNE 56528. Características
físico-mecánicas de la
madera. Preparación de probetas
para ensayos. Madrid.
AENOR (Asociación Española de Normalización).
UNE 56537. Características
físico-mecánicas de la
madera. Determinación de la resistencia
a la flexión estática. Madrid.
AENOR (Asociación Española de Normalización).
UNE-EN 13183-1.
Contenido de humedad de una pieza
de madera aserrada. Parte 1: Determinación
por el método de secado en
estufa. Madrid. (+ERRATUM: 2003,
+AC: 2004).
AENOR (Asociación Española de Normalización).
UNE EN ISO/IEC
Evaluación de la conformidad.
Requisitos generales para la
competencia de los laboratorios de
ensayo y de calibración. Madrid. (+
ERRATUM: 2006).
Bamber, R.K. and J. Burley. 1983. The
wood properties of radiata pine.
Commonwealth Agricultural Bureaux,
Slough, USA. 84 p.
Bao, F.C., Z.H. Jiang, X.M. Jiang, X.X. Lu,
X.Q. Luo and S.Y. Zhang, 2001. Differences
in wood properties between
juvenile wood and mature wood in 10
species grown in China. Wood
Science and Technology 35:363-375.
Barnett, J.R. and V.A. Bonham. 2004.
Cellulose microfibril angle in the cell
wall of wood fibres. Biological
Reviews 79:461-472.
Barrett, J.D. and R.M. Kellogg. 1991. Bending
strength and stiffness of secondgrowth
Douglas-fir dimension lumber.
Forest Products Journal 41:35-43.
Beaulieu, J., S.Y. Zhang, Q.B. Yu and A.
Rainville. 2006. Comparison between
genetic and environmental influences
on lumber bending properties in
young white spruce. Wood and Fiber
Science 38:553-564.
Bendtsen, B.A. 1978. Properties of wood
from improved and intensively managed
trees. Forest Products Journal
:61-72.
Bendtsen, B.A. and J. Senft, 1986. Mechanical
and anatomical properties in
individual growth rings of plantationgrown
eastern cottonwood and loblolly-
pine. Wood and Fiber Science
:23-38.
Brown, G.A., 1972. A statistical analysis of
density variation in Pinus caribaea
Morelet grown in Jamaica. Proc. Selection
breeding to improve some tropical
conifers. Commonwealth Forestry Institute.
Gainesville (FL). p:70-85.
Brown, H.P., A.J. Panshin and C.C. Forsaith.
Textbook of wood technology:
the physical, mechanical and
chemical properties of the commercial
woods of the United States.
Vol.2. McGraw-Hill, New York. 783 p.
Castéra, P., G. Nepveu and G. Chantre,
Principaux facteurs de contrôle
de la variabilité du bois chez le pin
maritime (Pinus pinaster Ait.). Proc. V
Colloque ARBORA. Association pour la
Recherche sur la Production Forestière
et le Bois en Région Aquitaine.
Bordeaux, France, Dec 2-3. p:91-101.
Choong, E.T. and P.J. Fogg. 1989. Differences
in moisture content and
shrinkage between innerwood and
outerwood of 2 shortleaf pine trees.
Forest Products Journal 39:13-18.
De Palacios, P., L.G. Esteban, F. García
Fernández and A. Guindeo, 2006.
Determination of the bending and
compression strength of Spanish fir
wood. Proc. The 5th International
Symposium Wood Structure and Properties
‘06. Arbora Publishers. Sliač -
Sielnica, Slovakia, Sept 3-6.
p:203-206.
De Palacios, P., L.G. Esteban, A. Guindeo,
F. García Fernández, A. Fernández
Canteli and N. Navarro. 2008. Variation
of impact bending in the wood of
Pinus sylvestris L. in relation to its
position in the tree. Forest Products
Journal 58:55-60.
Deresse, T., R.K. Shepard and S.M. Shaler.
Microfibril angle variation in
red pine (Pinus resinosa Ait.) and its
relation to the strength and stiffness
of early juvenile wood. Forest Products
Journal 53:34-40.
Dinwoodie, J.M., 1981. Timber: its nature
and behaviour. Van Nostrand Reinhold
Company Ltd., New York. 190 p.
Domec, J.C. and B.L. Gardner. 2002. Ageand
position-related changes in
hydraulic versus mechanical dysfunction
of xylem: inferring the design
criteria for Douglas-fir wood structure.
Tree Physiology 22:91-104.
Esteban, L.G., P. De Palacios, F. García
Fernández and J. Ovies. 2009.
Mechanical Properties of Wood from
the Relict Abies pinsapo Forests.
Forest Products Journal 59:72-78.
Fukazawa, K., 1984. Juvenile wood of
hardwoods judged by density variation.
IAWA Bulletin 5:65-73.
Giménez, A.M. and C.R. López. 2002.
Variación longitudinal de los elementos
del leño en Schinopsis quebracho
colorado (Schelcht.) Baril et Meyer.
Madera y Bosques 8(2):27-38.
Gorisek, Z. and N. Torelli. 1999. Microfibril
angle in juvenile, adult and compression
wood of spruce and silver fir.
Phyton-Ann REI Bot 39:129-132.
Harris, J.M. and B.A. Meylan. 1965.
Influence of microfibril angle on longitudinal
and tangential shrinkage in Pinus
radiata. Holzforschung 19:144-153.
Heger, L., 1974. Longitudinal variation of
specific gravity in stems of black
spruce, balsam fir, and lodgepole
pine. Canadian Journal of Forest
Research 4:321-326.
Hirai, S., 1958. Studies on the weightgrowth
of forest trees (VI): Chamaecyparis
obtusa. Bulletin of the Tokyo
University Forest 54:199-217.
Hui, Z. and Smith I., 1991. Factors influencing
bending properties of white
spruce lumber. Wood and Fiber
Science 23:483-500.
Isebrands, J.G. and C.M. Hunt. 1975.
Growth and wood properties of rapidgrown
Japanese larch. Wood and
Fiber Science 7:119-128.
Ivkovic, M., W.J. Gapare, A. Abarquez, J.
Ilic, M.B. Powell and H.X. Wu, 2009.
Prediction of wood stiffness, strength,
and shrinkage in juvenile wood
of radiata pine. Wood Science and
Technology 43:237-257.
Jayne, B.A., 1958. Effect of site and spacing
on the specific gravity of wood of
plantation-grown red pine. Tappi
:162-166.
Jeffers, J.W., 1959. Regression models of
variation in specific gravity in four provenances
of Sitka spruce. Journal of
the Institute of Wood Science 4:44-59.
Johansson, M. and R. Kliger. 2002.
Influence of material characteristics
on warp in Norway spruce studs.
Wood and Fiber Science 34:325-336.
Kennedy, R.W. 1995. Coniferous wood
quality in the future: concern and
strategies. Wood Science and Technology
:321-338.
Kliger, I.R., M. Perstorper and G. Johansson.
Bending properties of
Norway spruce timber. Comparison
between fast- and slow-grown stands
and influence of radial position of
sawn timber. Annals of Science
Forest 55:349-358.
Krahmer, R.L., 1966. Variation of specific
gravity in Western hemlock trees.
TAPPI 49:227-229.
Kretschmann, D.E. and B.A. Bendtsen,
Ultimate tensile -stress and
modulus of elasticity of fast-grown
plantation loblolly pine lumber. Wood
and Fiber Science 24:189-203.
Larson, P.R., D.E. Kretschmann, A. Clark
III and J.G. Isebrands, 2001. Formation
and properties of juvenile wood
in southern pines: a synopsis. General
Technical Report FPL-GTR-129.
Forest Products Laboratory, Madison
(WI). 42 pp.
Lewark, S. 1979. Wood characteristics in
Norway spruce breeding programs.
Proc. IUFRO Joint Meeting of Working
Parties on Norway spruce Provenance
and Norway Spruce
Breeding. Bucharest, Romania.
p:316-339.
Machado, J.S. and H.P. Cruz. 2005. Within
stem variation of maritime pine timber
mechanical properties. Holz Als
Roh-und Werkstoff 63:154-159.
Martín, S., P. Díaz-Fernández and J. de
Miguel. 1998. Regiones de procedencia
de las especies forestales
españolas. Géneros Abies, Fagus,
Pinus y Quercus. Dirección General
de Conservación de la Naturaleza.
Madrid. 22p.
Mazet, J.F. and G. Nepveu, 1991. Relationships
between wood shrinkage
properties and wood density for
Scots pine, silver fir and Norway
spruce. Annales des Sciences Forestieres
:87-100.
McDonald, S.S., G.B. Williamson, M.C.
Wiemann, 1995. Wood specific-gravity
and anatomy in Heliocarpus
appendiculatus (Tiliaceae). American
Journal of Botany 82:855-861.
McKimmy. M.D. 1959. Factors related to
variation of specific gravity in younggrowth
Douglas-fir. Oregon Forest
Products Research Center Bulletin.
Oregon State University, Corvallis
(OR). 52 p.
Medina, A.A., N.M. Dionisio, L.N. Laffitte,
I.R. Andía y S.M. Rivera. 2013. Variación
radial y axial de longitud de
fibras y elementos de vaso en Nothofagus
nervosa (Nothofagaceae) de la
Patagonia Argentina. Madera y Bosques
(2):7-19.
Megraw, R.A. 1985. Wood quality factors
in loblolly pine. Tappi Press, Atlanta
(GA). 88 p.
Mitchell, H.L. 1963. Specific gravity variation
in North American conifers.
Forest Products Laboratory, Forest
Service, U.S. Department of Agriculture.
Madison (WI) 30 p.
Nicholls, J.W.P., H.E. Dadswell, 1962. Tracheid
length in Pinus radiata D. Don.
Division of Forest Products Technological
Paper No 24. Commonwealth
Scientific and Industrial Research
Organisation, Melbourne, Australia.
p.
Niklas, K.J. 1992. Plant biomechanics: an
engineering approach to plant form
and function. University of Chicago
Press, Chicago (IL). 622 p.
Olesen, P.O. 1978. On cyclophysis and
topophysis. Silvae Genetica 27:173-
Palka, L.C. 1973. Predicting the effect of
specific gravity, moisture content,
temperature and strain rate on elastic
properties of softwoods. Wood
Science and Technology 7: 127-141.
Panshin, A.J. and C. De Zeeuw. 1980.
Textbook of wood technology: structure,
identification, properties, and
uses of the commercial woods of the
United States and Canada. Vol. 1.
th ed. McGraw-Hill Book Co., New
York. 722p.
Passialis, C. and A. Kiriazakos. 2004.
Juvenile and mature wood properties
of naturally-grown fir trees. Holz Als
Roh-und Werkst 62: 476-478.
Pearson, R.G., 1988. Compressive properties
of clear and knotty loblolly
pine juvenile wood. Forest Products
Journal 38:15-22.
Pearson, R.G. and R.C. Gilmore. 1971. DOI: https://doi.org/10.1055/s-1971-21760
Characterization of the strength of
juvenile wood of loblolly pine (Pinus
taeda L.). Forest Products Journal
:23-30.
Pearson, R.G. and R.C.Gilmore. 1980.
Effect of fast growth-rate on the
mechanical properties of loblolly pine
(Pinus taeda). Forest Products Journal
:47-54.
Pronin, D. 1971. Estimating tree specific
gravity of major pulpwood species of
Wisconsin. Forest Service Research
Paper - FPL 161. Forest Products
Laboratory, Madison (WI). 18 p.
Sanio, K.G. 1872. Ueber die Grösse der
Holzzellen bei der gemeinen Kiefer
(Pinus silvestris). Jahrb Wiss Bot 8,
-420 in ECHOLS R.M., 1955.
Linear relation of fibrillar angle to tracheid
length, and genetic control of
tracheid length in slash pine. Tropical
Woods 102:11-22.
Sinković, T., 1995. Physical properties of
juvenile fir-wood (Abies alba Mill.)
from Gorski Kotar. Drvna Industrija
:115-122.
Taylor, F.W., E.I.C. Wang, A. Yanchuk and
M.M. Micko. 1982. Specific gravity
and tracheid length variation of white
spruce in Alberta. Can Journal of
Forest Research 12:561-566.
Tsehaye, A., A.H. Buchanan and J.C.F.
Walker. 1995. Stiffness and tensile
strength variation within and between
radiata pine trees. Journal of the Institute
of Wood Science 13(5):513- DOI: https://doi.org/10.1016/0277-3791(94)90068-X
van Buijtenen, J.P. 1982. Fibers for the
future. Tappi 65:10-12.
Wellwood, R.W. and J. G. H. Smith, 1962.
Variation in some important qualities
of wood from young Douglas fir and
Hemlock trees. Research Paper No.
Faculty of Forestry, University of
British Columbia, Vancouver,
Canada. 15 pp.
Wilcox, W. W. and W. Y. Pong, 1971. The
effects of height, radial position, and
wet wood on white fir wood properties.
Wood and Fiber Science 3:47-55.
Wilson, J. W. and G. Ifju. 1965. Wood characteristics
VII: Intra-increment relationship
of Douglas fir wood density,
tensile strength and stiffness. Woodlands
Research Index No. 170. Pulp
and Paper Research Institute of
Canada, Pointe Claire, Canada. 24 pp.
Yamashita, K., Y. Hirakawa, H. Nakatani
and M. Ikeda. 2009. Tangential and
radial shrinkage variation within trees
in sugi (Cryptomeria japonica) cultivars.
Journal of Wood Science
:161-168.
Yao, J., 1969. Shrinkage properties of
second-growth southern yellow pine.
Wood Science and Technology 3:25-
Zobel, B.J. and J. P. van Buijtenen. 1989.
Wood variation: its causes and control.
Springer Verlag, Berlin, Germany.
p.
Publicado
Cómo citar
-
Resumen498
-
PDF198
Número
Sección
Licencia
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.