Evaluation of chemical compositions, air-dry, preservation and workability of eight fastgrowing plantation species in Costa Rica
DOI:
https://doi.org/10.21829/myb.2015.210424Palabras clave:
América central, madera comercial, especies tropicales, variación de propiedadesResumen
Costa Rica has successfully planted various forestry species for wood production. However, the use of their wood is limited, due to poor knowledge about their chemical properties, air-dry, preserved and workability performance. The present study details information of these properties for the species: Alnus acuminata (Aa), Acacia mangium (Am), Bombacopsis quinata (Bq), Cupressus lusitanica (Cl), Swietenia macrophylla (Sm), Terminalia amazonia (Ta), Terminalia oblonga (To) and Vochysia guatemalensis (Vg). Among the results obtained, it was found that the wood of these species is in general slightly acidic, except Bq, which presented tendency to be basic. Different species show considerable variability in the content of holocellulose, lignin and extractable micronutrients. Regarding micronutrients, and in relation to other species it was found a high percentage in Vg. The use of boron as a preservative, may be applied in the 8 plantation species. The presence of heartwood in some species made it not possible to be preserved by the vacuum-pressure method, but the sapwood was possible to preserve in all species. The drying rate increased with increasing board thickness and drying time was different among species. The fastest drying rate was found in Ta and Am, followed by Sm, To, Aa and Cl with intermediate values and Vg with the slowest air-drying rate. Am, Bq, Cl, Sm and To present from excellent to good planing, sanding , drilling and molding, but Ta, Bq, Aa and Vg, especially Aa and Vg, in the workability operations were catalogued as poor or very poor quality.
Evaluación de la composición química, secado al aire, preservación y trabajabilidad de ocho especies de rápido crecimiento en plantación de Costa Rica
En Costa Rica se han plantado con éxito varias especies forestales para la producción de madera. No obstante, el uso de la madera es limitado debido al poco conocimiento acerca de sus propiedades químicas, secado al aire, preservado y trabajabilidad. En el presente estudio se detalla información de esas propiedades para las especies: Alnus acuminata (Aa), Acacia mangium (Am), Bombacopsis quinata (Bq), Cupressus lusitanica (Cl), Swietenia macrophylla (Sm), Terminalia amazonia (Ta), Terminalia oblonga (To) and Vochysia guatemalensis (Vg). Dentro de los resultados obtenidos, se encontró que la madera presenta un pH ligeramente ácido, a excepción de Bq, con tendencia a ser básica. Las diferentes especies muestran una considerable variabilidad en el contenido de holocelulosa, lignina, extraíbles y micronutrientes; con respecto a los micronutrientes, y en relación con las otras especies se encontró un alto porcentaje en Vg. El uso de boro como preservador, puede ser aplicado en las 8 especies de plantación. Las especies con presencia de duramen no fue posible preservarlas con el método vacío-presión; sin embargo, la albura sí es posible de preservar en todas las especies. El tiempo de secado incrementa con el incremento de espesor de la tabla y presenta variación entre especies. El menor tiempo de secado se encontró para Ta y Am, seguido por Sm, To, Aa y Cl, con valores intermedios y Vg con el secado al aire más lento. Am, Bq, Cl, Sm y To presentan de excelentes a buenas propiedades de cepillado, lijado, taladrado y moldurado, pero el resto de las especies (Ta, Bq, Aa and Vg), en especial para Aa y Vg, en las operaciones de trabajabilidad son catalogadas como de mala o muy pobre calidad.
Descargas
Citas
Abe, I. and K. Ono.1982. The acidity of wood and the extractives of some tropical species. Journal of the Japan Wood Research Society 28(6):535-540.
PADT.RFT. 1976. Acuerdo de Cartagena. Normas y metodología para las actividades tecnológicas. Proyecto Andino de Desarrollo Tecnológico en el área de recursos tropicales. Documento PADT.RFT/di 2. Lima, Perú. 25 p.
ASTM. 2012a. D1102-84 Standard test method for ash in wood. Annual Book of ASTM Standards. Vol. 11.06. Philadelphia, US. 2 p.
ASTM. 2012b. D1110-84 (1995) Standard test methods for water solubility of wood. Annual Book of ASTM Standards. Vol. 11.06. Philadelphia, US. 2p.
ASTM. 2012c. D1109-84 Standard test method for 1% sodium hydroxide solubility of wood. Annual Book of ASTM Standards. Vol. 11.06. Philadelphia, US. 2p.
ASTM. 2012d. Standard test method for ethanol-toluene solubility of wood. Annual Book of ASTM Standards. Vol. 11.06. Philadelphia, US. 2p.
ASTM. 2012e. D1108-96 Standard test method for dichloromethane solubles in wood. Annual Book of ASTM Standards. Vol. 11.06. Philadelphia, US. 2p.
ASTM. 2012f. D-1666-2003. Standard test methods for conducting machining tests of wood and wood-base materials. Annual Book of ASTM Standards. Vol. 11.06. Philadelphia, US. 16p.
Baraloto, C., C Paine, L. Poorte, J. Beauchene, D. Bonal and A. Domenach. 2010. Decoupled leaf and stem economics in rain forest trees. Ecology Letters 13(11):1338-1347. DOI: https://doi.org/10.1111/j.1461-0248.2010.01517.x
Bárcenas Pazos, G.M. y R. Dávalos Sotelo. 1999. Importancia de la lignina en las contracciones de la madera: revisión bibliográfica. Madera y Bosques 5(1):13-26 DOI: https://doi.org/10.21829/myb.1999.511351
Bougnom, B.P., B.A. Knapp, F. Etoa and H. Insam. 2011. Possible use of wood ash and compost for improving acid tropical soils. In: H. Insam, and B.A. Knapp, eds. Recycling of biomass ashes. Springer Verlag. New York. p:87-105. DOI: https://doi.org/10.1007/978-3-642-19354-5_7
Butterfield, R., R. Crook, R. Adams and R, Morris. 1993. Radial variation in wood specific gravity, fiber length and vessel area for two Central American hardwoods; Hyeronima alchorneoides and Vochysia guatemalensis: natural and plantation-grown trees. IAWA Journal 14(2): 153-161. DOI: https://doi.org/10.1163/22941932-90001310
Demeyer, A., J.C. Voundi and M.G. Verloo, 2001. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technology 77(3): 287-295 DOI: https://doi.org/10.1016/S0960-8524(00)00043-2
De Mauro, L.F., J. Brito, A.M. Nolasco and L. Rodrigues. 2011. Effect of thermal rectification on machinability of Eucalyptus grandis and Pinus caribaea var. hondurensis woods. European Journal of Wood Products 69(4):641–648. DOI: https://doi.org/10.1007/s00107-010-0507-x
Erickson, H.D. 1962. Some aspects of method in determining cellulose in wood. TAPPI Journal 45(9):710-719.
Jrabbnhoft, K., P. Hoffmeyer, C.G. Bechgaards and L. Damkilde. 2004. Finite element analysis of boron diffusion in wooden pole. Wood Fiber and Science 36(4): 573-584.
González, E. and R. Fisher. 1998. Variation in selected wood properties of Vochysia guatemalensis from four sites in Costa Rica. Forest Science 44(2):185-191.
Johns, W. and N. Niazi. 1980. Effect of pH and buffering capacity of wood on the gelation time of urea-formaldehyde resin. Wood fiber and Science 12(4):255-263
Kukachka, B.F. and R.B. Miller. 1980. Chemical spot-test for aluminum and its value in wood identification. IAWA Bulletin n.s. I(3): 104-109. DOI: https://doi.org/10.1163/22941932-90000699
Kilic, A. and P. Niemz, 2012. Extractives in some tropical woods. European Journal of Wood Products 70(1-3):79–83 DOI: https://doi.org/10.1007/s00107-010-0489-8
Keenan, F.J. and M. Tejada. 1988. Maderas tropicales como material de construcción en los países del grupo andino de América del Sur. Ottawa, Canada. 147 p.
Lloyd, J.D. 1998. Borates and their biological applications. Inteernational Research Group on Wood Preservation. IRG/WP 98-30178. IRG Secretariat, Stockholm Sweden. 17 p.
Monique, T., I. Bosman, K. ven Genderen and P. Baas. 1994. Radial variation in wood properties of naturally and plantationvariation in wood properties of naturally and plantation. IAWA Journal 15(2): 111-120. DOI: https://doi.org/10.1163/22941932-90001350
Moya, R. and F. Muñoz. 2010. Physical and mechanical properties of eight species from fast-growth plantation in Costa Rica. Journal of Tropical Forest Science 22(4):317-328.
Moya, R., L. Leandro and O. Murillo. 2009. Wood characteristics of Terminalia amazonia, Vochysia guatemalensis and Hyeronima alchorneoides planted in Costa Rica. Revista Bosque 30(2):78-87. DOI: https://doi.org/10.4067/S0717-92002009000200003
Moya, R. and C. Tenorio. 2013. Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass and Bioenergy 56(1): 14-21 DOI: https://doi.org/10.1016/j.biombioe.2013.04.013
Moya, R., E. Ureña, C. Salas, F. Muñoz and O. Espinosa. 2013. Kiln drying behavior of lumber from ten fast-growth plantation species in Costa Rica. Wood Material Science and Engineering 8(1):37-45. DOI: https://doi.org/10.1080/17480272.2012.707686
Morrell, J.J., C.M. Sexton and A.E. Preston. 1990. Effect of moisture content of douglas-fir heartwood on longitudinal diffusion of boron from fused borate rods. Forest Products Journal 40(4):37-40.
Nakada, R. 2006. Within-stem water distribution in living trees of some conifers. IAWA Journal. 27(3):313–327 DOI: https://doi.org/10.1163/22941932-90000157
Nichols J.D. and J.K. Vanclay. 2012. Domestication of native tree species for timber plantations: key insights for tropical island nations. International Forestry Review 14(4):402-413. DOI: https://doi.org/10.1505/146554812804715892
Pereira, H., J. Graca and J.C. Rodrigues. 2003. Wood chemistry in relation to quality. In: Barnett, J., G. JeEronimidis, eds. Wood quality and its biological basis. Blackwell Publishing Ltd, London, 3-40 p.
Petit, B. and F. Montagnini. 2004. Growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid neotropics. Forests Ecology and Management 199(2):243-257. DOI: https://doi.org/10.1016/j.foreco.2004.05.039
Ra, J.B., H.M. Barnes and T.E. Conners. 2003. Determination of boron diffusion coefficients in wood. Wood Fiber and Science 31(1): 90-103.
Ratnasingam, J. and F. Ioras. 2012. Effect of thermal rectification on machinability of Eucalyptus grandis and Pinus caribaea var. hondurensis woods. European Journal Wood Products 70(4):759-761. DOI: https://doi.org/10.1007/s00107-011-0587-2
Schroeder, H.A. 1972. Shrinking and swelling differences between hardwoods and softwoods. Wood and Fiber 4(1):20-25.
Sparks, D.L., 1996. Methods of soil analysis. Part 3, Chemical methods. Soil Science Society of America. Madison, WI, USA. 356 p.
Stan, L., 2010. Wood Preservation. In: USDA (United States Department of Agriculture). Wood Handbook. General Technical Report FPL-GTR-190. Forest Service. Forest Products Laboratory. Madison, WI: USA. 15 p.
Serrano R., 1983. Características de cepillado, taladrado, lijado y torneado de 16 especies. III Parte. In: Serrano R, Tuk, J. Informe Final del proyecto: Propiedades físicas, mecánicas, preservación, durabilidad, cepillado, taladrado, lijado, torneado de 18 especies maderables de Costa Rica. Centro de Investigación en Ingeniería en Maderas. Instituto Tecnológico de Costa Rica. 72 p.
TAPPI. 2002. Standard test for acid–insoluble lignin in wood and pulp. Parkway South Norcross, USA. 4 p.
Torelli, N. and K. Čufar. 1996. Mexican tropical hardwoods: machinability, nailing and screwing. Holz als Roh-und Werkstoff 54(1): 69-71. DOI: https://doi.org/10.1007/s001070050138
Williams, L. and J. Mauldin. 1996. Integrated protection against lyctid beetle infestations. III. Implementing boron treatment of Virola lumber in Brazil. Forest Products Journal 36 (11-12):24-28.
Zelinka, S. L. and D.S. Stone. 2011. The effect of tannins and pH on the corrosion of steel in wood extracts. Materials and Corrosion 62(3):739-744. DOI: https://doi.org/10.1002/maco.201005845
Publicado
Cómo citar
-
Resumen976
-
PDF241
-
HTML207
Número
Sección
Licencia
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.