Drought stress in provenances of Lupinus elegans from different altitudes

Autores/as

  • José Carmen Soto-Correa Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo
  • Cuauhtémoc Sáenz-Romero Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo
  • Horacio Horacio Instituto de Investigaciones en Ecosistemas y Sustentabilidad. Universidad Nacional Autónoma de México
  • Roberto Lindig-Cisneros Instituto de Investigaciones en Ecosistemas y Sustentabilidad. Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.21829/myb.2015.211431

Palabras clave:

gradiente altitudinal, cambio climático, Fabaceae, bosque de pino, restauración

Resumen

The response of plants to altitudinal gradients depends on several factors and might differ among life strategies. Understanding these responses is highly relevant for management of forest species, particularly under climate change scenarios. We explored the response to drought of different provenances of Lupinus elegans, obtained from an altitudinal gradient. This species is a shrub that acts as a nurse plant in temperate forests in its geographical range. Seeds were collected from five natural provenances across an altitudinal gradient (2312 m to 2885 m a.s.l.). A common-garden experiment was conducted with four drought treatments (irrigation at every 3, 7, 15 and 21 days) in a shade-house located at 1972 m a.s.l. All provenances presented reduced heights and numbers of leaves with increased drought intensity, regardless of site of origin. Survival among provenances presented an altitudinal pattern, where those belonging to higher sites exhibited greater survival. Provenances from lower altitudes, coming from drier and warmer sites, exhibited poorer survival against drought stress. Overall, our results indicate that there are differences among provenances, but since this species is a short lived perennial (five years on average), it is more sensitive to microclimate than to conditions determined for large scale patterns such as altitudinal gradients. This should be considered for management practices such as ecological restoration.

Estrés por sequía en Lupinus elegans procedentes de diferentes altitudes

La respuesta de las plantas a los gradientes altitudinales depende de varios factores y puede variar entre estrategias de vida. Entender esta respuesta es relevante para el manejo de especies forestales, en particular ante los efectos esperados del cambio climático. En este trabajo se exploró la respuesta a la sequía de diferentes procedencias de Lupinus elegans, obtenidas de un gradiente altitudinal. Esta especie es un arbusto que actúa como planta nodriza en bosques templados a lo largo de su área de distribución geográfica. Se colectaron semillas de cinco procedencias a los largo de un gradiente altitudinal (2312 m a 2885 m snm). Se llevó a cabo un experimento de jardín común con cuatro tratamientos de sequía (riego cada 3, 7, 15 y 21 días) en una casa de sombra localizada a 1972 m snm. Las plantas de todas las procedencias mostraron un menor tamaño y número de hojas conforme aumentó el grado de sequía, independientemente de la procedencia. La supervivencia entre las procedencias mostró una relación con el gradiente altitudinal de origen, pues aquellas procedentes de sitios a mayor altitud mostraron mayor supervivencia. Las procedencias de altitudes menores, que en principio son de lugares más secos y cálidos, mostraron baja supervivencia en respuesta a la sequía. Los resultados indican que hay una diferenciación entre procedencias, pero que siendo esta especie perenne de vida corta (5 años), es más sensible a las condiciones microclimáticas que a las condiciones determinadas por patrones a escalas mayores como son los gradientes altitudinales. Esto debe de ser considerado para prácticas de manejo como la restauración ecológica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Angert, A., S. Biraud, C. Bonfils, C.C. Henning, W. Buermann, J. Pinzon, C.J. Tucker and I. Fung. 2005. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academy of Sciences of the United States of America 102:10823–10827. DOI: https://doi.org/10.1073/pnas.0501647102

Barber, V.A., G.P. Juday and B.P. Finney. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673. DOI: https://doi.org/10.1038/35015049

Blanco-García, A., C. Sáenz-Romero, C. Martorell, P. Alvarado-Sosa and R. Lindig-Cisneros. 2011. Nurse-plant and mulching effects on three conifer species in a Mexican temperate forest. Ecological Engineering 37(6):994-998. DOI: https://doi.org/10.1016/j.ecoleng.2011.01.012

Charra-Vaskou, K., G. Charrier, R. Wortemam, B. Beikiecher, H. Cochard, T. Ameglio and S. Mayr. 2011. Drought and frost resistance of trees: a comparison of four species at different sites and altitudes. Annals of Forest Science 69(3): 325-333. DOI: https://doi.org/10.1007/s13595-011-0160-5

Chen, L., S. Wu and T. Pan. 2011. Variability of climate-growth relationships along an elevation gradient in the Changbi mountain, northeastern China. Trees-Strcuture and function 25(6):1133-1139. DOI: https://doi.org/10.1007/s00468-011-0588-0

Crookston, N.L. 2010. Research on Forest Climate Change: Potential Effects of Global Warming on Forests and Plant Climate Relationships in Western North America and Mexico http://forest.moscowfsl.wsu.edu/climate/. Visited 24/July/2010.

Díaz-Rodríguez, B., A. Blanco-García, M. Gómez-Romero and R. Lindig-Cisneros. 2012. Filling the gap: restoration of biodiversity for conservation in productive forest landscapes. Ecological Engineering 40:88-94. DOI: https://doi.org/10.1016/j.ecoleng.2011.12.017

Díaz-Rodríguez, B., E. del-Val, M. Gómez-Romero, P. A. Gómez-Ruiz, and R. Lindig-Cisneros. 2013. Conditions for establishment of a key restoration species, Lupinus elegans Kunth, in a Mexican temperate forest. Botanical Sciences 91(2):225-232. DOI: https://doi.org/10.17129/botsci.417

Dunn, D.D. 2001. Lupinus. In: G. Calderón de R., J. Rzedowski. Flora fanerogámica del Valle de México. Instituto de Ecología, A.C. - Conabio. Pátzcuaro, Michoacán, México. p:290-300.

Filella, I. and J. Peñuelas. 1999. Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecology 145:157-165. DOI: https://doi.org/10.1023/A:1009826803540

Fitzpatrick, C. M., D.A. Gove, J.N. Sanders and R.R. Dunn. 2008. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biology 14(6):1337-1352. DOI: https://doi.org/10.1111/j.1365-2486.2008.01559.x

Gómez-Mendoza, L. and L. Arriaga. 2007. Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conservation Biology 21(6):1545-1555. DOI: https://doi.org/10.1111/j.1523-1739.2007.00814.x

Gómez-Ruiz, P.A., R. Lindig-Cisneros and O. Vargas-Ríos. 2013. Facilitation among plants: a strategy for the ecological restoration of the high-andean forest (Bogotá D.C. - Colombia). Ecological Engineering 57:267-275. DOI: https://doi.org/10.1016/j.ecoleng.2013.04.049

Jump, A.S., J.M. Hunt and J. Peñuelas. 2007. Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny mountains, northeast Spain. Ecoscience 14(4):507–518. DOI: https://doi.org/10.2980/1195-6860(2007)14[507:CROGAE]2.0.CO;2

Körner, C. 2003. Plant Alpine Life. Springer-Verlag, Berlin. DOI: https://doi.org/10.1007/978-3-642-18970-8_3

Lara-Cabrera S., N. Alejandre-Melena, E. Medina-Sánchez and R. Lindig-Cisneros. 2009. Genetic Diversity in populations of Lupinus elegans Kunth. Implications for ecological restoration. Revista Fitotecnia Mexicana 32(2):79-86. DOI: https://doi.org/10.35196/rfm.2009.2.79-86

Lenoir, J., J.C. Gégout, P.A. Marquet, P. de Ruffray and H. Brisse. 2008. A significant upward shift in plant optimum elevation during the 20th Century. Science 320:1768-1770. DOI: https://doi.org/10.1126/science.1156831

Levitt, J. 1980. Responses of plants to environmental stresses. Academic Press. New York.

Li, C., X. Zhang, X. Liu, O. Luukkanen and F. Berninger. 2006. Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica 40(1):5-13. DOI: https://doi.org/10.14214/sf.348

Martínez-Trinidad, T., J.J. Vargas-Hernández, A. Muños-Orozco, and J. López-Upton. 2002. Respuesta al déficit hídrico de Pinus leiophylla: consumo de agua y crecimiento en plántulas de diferentes poblaciones. Agrociencia 36(3):365-376.

Martínez-Vilalta, J. and W. T. Pockman. 2002. The vulnerability to freezing-induced xylem cavitation of Larrea tridentata in the Chihuahuan desert. American Journal of Botany 89(12):1916-1924. DOI: https://doi.org/10.3732/ajb.89.12.1916

Medeiros, S. J. and W.T. Pockman. 2011. Drought increases freezing tolerance of both leaves and xylem of Larrea tridentata. Plant, Cell and Environment 34(1):43-51. DOI: https://doi.org/10.1111/j.1365-3040.2010.02224.x

Medina-Sánchez, E. and R. Lindig-Cisneros. 2005. Effect of scarification and growing media on seed germination of Lupinus elegans. H. B. K. Seed Science and Technology 33(1):237-241. DOI: https://doi.org/10.15258/sst.2005.33.1.24

Méndez-Natera, J.R., L. Lara and J.A. Gil-Marin. 2007. Efecto del riego por goteo en el crecimiento inicial de tres cultivares de algodón (Gossypium hirsutum L.). Idesia 25(2):7-15. DOI: https://doi.org/10.4067/S0718-34292007000200002

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Reviews in Ecology, Evolution and Systematics 37:637-669. DOI: https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

Rambal, S. and G. Debussche. 1995. Water balance of Mediterranean ecosystems under a changing climate. In: J.M. Moreno and W.C. Oechel, eds. Global change and Mediterranean-type ecosystems. Springer Verlag, New York. p: 386-407 DOI: https://doi.org/10.1007/978-1-4612-4186-7_19

Rehfeldt, G. E., D.E. Ferguson and N.L. Crookston. 2009. Aspen, climate and sudden decline in western USA. Forest Ecology and Management 258:2353-2364. DOI: https://doi.org/10.1016/j.foreco.2009.06.005

Reichstein, M., J.D. Tenhunen, O. Roupsard, J.M. Ourcival, S. Rambal, F. Miglietta, A. Peressotti, M. Pecchiari, G. Tirone and R. Valentini. 2002. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites. Revision of current hypotheses? Global Change Biology 8(10):999-1017. DOI: https://doi.org/10.1046/j.1365-2486.2002.00530.x

Robles-Díaz, E., E. Jurado, M. Ruíz-López, L. Yáñez-Espinosa and J. Flores. 2014. Heat shock effect in breaking physiscal dormancy in seeds of Lupinus elegans and L. rotundifolius from Jalisco, México. Botanical Sciences 92(1):123-129. DOI: https://doi.org/10.17129/botsci.18

Rundel, P., A. Smith and F. Meinzer. 1994. Tropical Alpine environments. Cambridge University Press. UK. DOI: https://doi.org/10.1017/CBO9780511551475

Sáenz-Romero, C., G.E. Rehfeldt, N.L. Crookston, P. Duval P, R. St-Amant, J. Beaulieu and B.A. Richardson. 2010. Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Climatic Change 102:595-623. DOI: https://doi.org/10.1007/s10584-009-9753-5

SAS Institute Inc. 2004. SAS/STAT® 9.1 User’sGuide. Cary, NC: SAS Institute Inc. 5136 p.

Soto-Correa, J.C., C. Sáenz-Romero, R. Lindig-Cisneros and E. de la Barrera. 2013. The neotropical shrub Lupinus elegans, from temperate forests, may not adapt to climate change. Plant Biology 15(3):607-610. DOI: https://doi.org/10.1111/j.1438-8677.2012.00716.x

Tenopala, J., F.J. Gonzalez and E. de la Barrera. 2012. Physiological responses of the green manure, Vicia sativa, to drought. Botanical Sciences 90(3):305-311. DOI: https://doi.org/10.17129/botsci.392

Van der Maaten-Theunissen, M., H.P. Kahle and E. van der Maaten. 2013. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Annals of Forest Science 70(2):185-193. DOI: https://doi.org/10.1007/s13595-012-0241-0

Vitasse, Y., S. Delzon, E. Dufrêne, J.Y. Pontailler, J.M. Louvet, A. Kremer and R. Michalet. 2009. Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar response? Agricultural and Forest Meteorology 149(5):735-744. DOI: https://doi.org/10.1016/j.agrformet.2008.10.019

Vitt, P., K. Havens, A.T. Kramer, D. Sollenberger and E. Yates. 2010. Assisted migration of plants: Changes in latitudes, changes in attitudes. Biological Conservation 143(1):18-27. DOI: https://doi.org/10.1016/j.biocon.2009.08.015

Yu, D.P., Q.L. Wang, G.G Wang and L.M. Dai. 2006. Dendroclimatic response of Picea jezoensis along an altitudinal gradient in Changbai mountains. Science in China Series E: Technological Sciences 49 (Suppl.1):150-159. DOI: https://doi.org/10.1007/s11434-006-8116-0

Zhang, W.T., Y. Jiang, M.Y. Dong, M.Y. Kang and H.C. Yang. 2012. Relationship between the radial growth of Picea meyeri and climate along elevations of the Luyashan mountain in north-central China. Forest Ecology and Management 265:142-149. DOI: https://doi.org/10.1016/j.foreco.2011.10.017

Descargas

Publicado

2015-04-30

Cómo citar

Soto-Correa, J. C., Sáenz-Romero, C., Horacio, H., & Lindig-Cisneros, R. (2015). Drought stress in provenances of Lupinus elegans from different altitudes. Madera Y Bosques, 21(1), 35–43. https://doi.org/10.21829/myb.2015.211431
Metrics
Vistas/Descargas
  • Resumen
    325
  • PDF
    198
  • HTML
    188

Número

Sección

Artículos Científicos

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.