Effects of Skidder on Soil Compaction, Forest Floor Removal and Rut Formation

Autores/as

  • Ahmad Solgi Department of Forestry. Faculty of Natural Resources. University of Guilan
  • Ramin Naghdi Department of Forestry. Faculty of Natural Resources. University of Guilan
  • Mehrdad Nikooy Department of Forestry. Faculty of Natural Resources. University of Guilan

DOI:

https://doi.org/10.21829/myb.2015.212451

Palabras clave:

densidad a granel, hojarasca, huella de las llantas, perturbación del suelo, pendiente del terreno

Resumen

An extensive field trial was set up to examine the influence of traffic intensity (5, 10, and 15 skidding cycles) (i.e. pass back and forth on the skid trail) and skid trail slope (0-10, 10-20, and > 20)% on soil compaction, forest floor removal, and rut depth after logging. The results showed that dry bulk density and rut depth increased with the increase of traffic frequency and slope, but floor coverage decreased. Within each traffic treatment soil compaction raised with the increase of skid trail slope, so that significant differences in dry bulk density were observed between slopes lower than 20% and those greater than 20%. Bulk density has become quite close to the critical value after 15 cycles. We observed soil rutting on the treatments started with 10 cycles. Soil disturbance increased significantly on slopes with less than 20% inclination with a dry bulk density of 1.157 g cm-3 after 5 cycles compared to 0.923 g cm-3 on slopes lower than 10%. In addition the litter mass on the treatments with 10 cycles and slopes greater than 20% (386.586 kg ha-1) was significantly lower (p < 0.05) than treatments with 15 cycles and slopes lower than 10% (545.382 kg ha-1). Data suggest that disturbance increased earlier in the steep treatments than in less sloping conditions. The dramatic increase of soil disturbance on treatments with slopes greater than 20% may be associated with increasing load on the rear axle combined with slipping on steep slope trail.

Efecto del arrastre en la compactación y remoción de suelo y en la formación de surcos

Se realizó un extenso estudio de campo para examinar la influencia de la intensidad de tráfico (5, 10 y 15 ciclos de arrastre) (es decir, pasar de ida y vuelta en la pista de arrastre) y de la pendiente del terreno de arrastre (0-10, 10-20 y más de 20)% en la compactación del suelo, remoción suelo del bosque y la profundidad de la huella después de la tala. Los resultados mostraron que la densidad de masa seca y la profundidad de las raíces se incrementan conforme lo hacen la frecuencia del tráfico y la pendiente y que la cobertura de suelo disminuyó. Dentro de cada tratamiento de tráfico, la compactación del suelo aumentó con el incremento de la pendiente del terreno, se observaron diferencias significativas en la densidad aparente seca entre la pendiente menor a 20% y la mayor a 20%. La densidad aparente se acerca a su valor crítico después de 15 ciclos. Se observó la formación de surcos en el suelo en los tratamientos de 10 ciclos. La perturbación del suelo aumentó significativamente en las pendientes con más de 20% de inclinación, con una densidad seca aparente de 1,157 g cm-3 después de 5 ciclos en comparación con 0,923 g cm-3 en pendientes menores a 10%. Se observó que la masa de desechos vegetales (hojarasca) en el suelo en los tratamientos con 10 ciclos y laderas de más de 20% (386.586 kg ha-1) fue significativamente más baja (p <0,05) que en los tratamientos con 15 ciclos y laderas de menos de 10% (545,382 kg ha-1). Los datos sugieren que la perturbación se incrementa primero en los terrenos empinados que en aquellos con menor inclinación. El considerable aumento de la perturbación del suelo en los tratamientos con pendientes de más 20% puede estar asociado con el aumento de la carga en el eje trasero combinado con el deslizamiento sobre el terreno empinado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ampoorter, E., R. Goris., W.M. Cornelis and K. Verheyen. 2007. Impact of mechanized logging on compaction status of sandy forest soils. Forest Ecology and Management 241(1-3):162-174. DOI: https://doi.org/10.1016/j.foreco.2007.01.019

Ampoorter, E., L. Van Nevel., M. Hermy and K. Verheyen. 2010. Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. Forest Ecology and Management 260(10):1664–1676. DOI: https://doi.org/10.1016/j.foreco.2010.08.002

Ampoorter, E., P.D. Frenne., M. Hermy and K. Verheyen. 2011. Effects of soil compaction on growth and survival of tree saplings: A meta-analysis. Basic and Applied Ecology 12(5):394–402. DOI: https://doi.org/10.1016/j.baae.2011.06.003

Arocena, J.M. 2000. Cations in solution from forest soils subjected to forest floor removal and compaction treatments. Forest Ecology and Management 133(1-2):71–80. DOI: https://doi.org/10.1016/S0378-1127(99)00299-6

Aust, W.M., J.A. Burger., E.A. Carter., D.P. Preston and S.C. Patterson. 1998. Visually determined soil disturbance classes used as indices of forest harvesting disturbance. Southern Journal of Applied Forestry 22(4):245-250. DOI: https://doi.org/10.1093/sjaf/22.4.245

Ballard, T.M. 2000. Impacts of forest management on northern forest soils. Forest Ecology and Management 133(1-2):37–42. DOI: https://doi.org/10.1016/S0378-1127(99)00296-0

Botta, G.F., D. Jorajuria, H. Rosatto and C. Ferrero. 2006. Light tractor traffic frequency on soil compaction in the Rolling Pampa region of Argentina. Soil and Tillage Research. 86(1):9–14. DOI: https://doi.org/10.1016/j.still.2005.01.014

Davies, D.B, J.B. Finey and S.J. Richardson. 1973. Relative effects of tractor weight and wheel-slip in causing soil compaction. Soil Science 24(3):401–409. DOI: https://doi.org/10.1111/j.1365-2389.1973.tb00775.x

Demir, M., E. Makineci and E. Yilmaz. 2007. Investigation of timber harvesting impacts on herbaceous cover, forest floor and surface soil properties on skid road in an oak (Quercus petrea L.) stand. Building and Environment 42(3):1194-1199. DOI: https://doi.org/10.1016/j.buildenv.2005.11.008

Eliasson L. 2005. Effects of forwarder tyre pressure on rut formation and soil compaction. Silva Fennica 39(4):549–557. DOI: https://doi.org/10.14214/sf.366

Ezzati, S., A. Najafi., M.A. Rab and E.K. Zenner. 2012. Recovery of soil bulk density, porosity and rutting from ground skidding over a 20-year period after timber harvesting in Iran. Silva Fennica 46(4):521–538. DOI: https://doi.org/10.14214/sf.908

Frey, B., J. Kremer., A. Rüdt., S. Sciacca., D. Matthies and P. Lüscher. 2009. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. European Journal of Soil Biology 45(4):312–320. DOI: https://doi.org/10.1016/j.ejsobi.2009.05.006

Greacen, E.L. and R. Sands. 1980. Compaction of forest soils. A review. Australian Journal of Soil Research 18(2):163-189. Heninger, R., W. Scott., A. Dobkowski, R. Miller., H. Anderson and S. Duke. 2002. Soil disturbance and 10-year growth response of coast Douglas-fir on non tilled and tilled skid trails in the Oregon Cascades. Canadian Journal of Forest Research 32(2):233–246. DOI: https://doi.org/10.1139/x01-195

Jamshidi, R., D. Jaeger, N. Raafatnia and M. Tabari. 2008. Influence of two ground-based skidding systems on soil compaction in diff erent slope conditions. International Journal of Forest Engineering 19(1):9–16. DOI: https://doi.org/10.1080/14942119.2008.10702554

Jurgensen, M.F., A.E. Harvey., R.T. Graham., D.S. Page-Dumroese., J.R. Tonn., M.J. Larsen and T.B. Jain. 1997. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. Forest Science 43(2):234–251.

Kalra, Y.P. and D.G. Maynard. 1991. Methods and Manual for Forest Soil and Plant Analysis. Forestry Canada, Re NOR-X-319. Northern Forestry Center.

Krag, R., K. Higgingbotham and R. Rothwell. 1986. Logging and soil disturbance in southeast British Columbia. Canadian journal of Forest Research 16(6):1345–1354. DOI: https://doi.org/10.1139/x86-238

Kozlowski, T.T. 1999. Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research 14(6):596–619. DOI: https://doi.org/10.1080/02827589908540825

Lacey, S.T. and P.J. Ryan. 2000. Cumulative management impacts on soil physical properties and early growth of Pinus radiata. Forest Ecology and Management 138(1-3):321–333. DOI: https://doi.org/10.1016/S0378-1127(00)00422-9

McCurdy, D., B. Stewart., P. Neily., E. Quigley and K. Keys. 2004. Post-harvest soil disturbance and permanent structure survey. Ecosystem Management Group Forest Management Planning. Nova Scotia Department of Natural Resources. 17 p.

McIver, J.D. and L. Starr. 2001. A literature review on the environmental effects of postfire logging. Western Journal of Applied Forestry 16(4):159–168. DOI: https://doi.org/10.1093/wjaf/16.4.159

McNabb, K.L., M.S. Miller., B.G. Lockaby., B.J. Stokes., R.G. Clawson., J.A. Stanturf and J.N.M. Silva. 1997. Selection harvest in Amazonian rainforest: long-term impacts on soil properties. Forest Ecology and Management 93(1-2):153-160. DOI: https://doi.org/10.1016/S0378-1127(96)03921-7

McNabb, D.H., A.D. Startsev and H. Nguyen. 2001. Soil wetness and traffic level effects on bulk density and air-filled porosity of compacted boreal forest soils. Soil Science Society America Journal 65(4):1238–1247. DOI: https://doi.org/10.2136/sssaj2001.6541238x

Mendham, D.S., K.V. Sankaran., A.M. O’Connell and T.S. Grove. 2002. Eucalyptus globules harvest residue management effects on soil carbon and microbial biomass at 1 and 5 years after plantation establishment. Soil Biology and Biochemistry 34(12):1903–1912. DOI: https://doi.org/10.1016/S0038-0717(02)00205-5

Naghdi, R., I. Bagheri and R. Basiri. 2010. Soil disturbances due to machinery traffic on steep skid trail in the north mountainous forest of Iran. Journal of Forestry Research 21(4):497-502. DOI: https://doi.org/10.1007/s11676-010-0105-0

Naghdi, R. and A. Solgi. 2014. Effects of skidder passes and slope on soil disturbance in two soil water contents. Croatian Journal of Forest Engineering 35(1):73-80.

Najafi, A., A. Solgi and S.H. Sadeghi. 2009. Soil disturbance following four wheel rubber skidder logging on the steep trail in the north mountainous forest of Iran. Soil and Tillage Research 103(1):165–169. DOI: https://doi.org/10.1016/j.still.2008.10.003

Najafi, A., A. Solgi and S.H. Sadeghi. 2010. Effects of skid trail slope and ground skidding on soil disturbance. Caspian Journal of Environmental Science. 8(1):13-23.

Najafi, A. and A. Solgi. 2010. Assessing site disturbance using two ground survey methods in a mountain forest. Croatian Journal of Forest Engineering 31(1):47-55.

Rab, M.A. 1994. Changes in physical properties of a soil associated with logging of Eucalyptus regnan forest in southeastern Australia. Forest Ecology and Management 70(1-3):215-229. DOI: https://doi.org/10.1016/0378-1127(94)90088-4

Raghavan, G.S.V., E. McKyes and B. Beaulieu. 1977. Prediction of clay soil compaction. Journal of Terramechanics 14(1):31–38. DOI: https://doi.org/10.1016/0022-4898(77)90025-8

Solgi, A., A. Najafi and H. Sam Daliri. 2013. Assessment of Crawler Tractor Effects on Soil Surface Properties. Caspian Journal of Environmental Science 11(2):185-194.

Solgi, A. and A. Najafi. 2014. The impacts of ground-based logging equipment on forest soil. Journal of Forest Science 60(1):28–34. DOI: https://doi.org/10.17221/76/2013-JFS

Solgi, A., A. Najafi and S.H. Sadeghi. 2014. Effects of traffic frequency and skid trail slope on surface runoff and sediment yield. International Journal of Forest Engineering 25(2):171-178. DOI: https://doi.org/10.1080/14942119.2014.955699

Startsev, A.D. and D.H. McNabb. 2000. Effects of skidding on forest soil infiltration in west-central Alberta. Canadian Journal of Soil Science 80(4):617–624. DOI: https://doi.org/10.4141/S99-092

Tan, X., X.C. Scott and R. Kabzems. 2005. Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study. Forest Ecology and Management 217(2-3):158–170. DOI: https://doi.org/10.1016/j.foreco.2005.05.061

Tan, X., R. Kabzem and S.X. Chang. 2006. Response of forest vegetation and foliar δ13C and δ15N to soil compaction and forest floor removal in a boreal aspen forest. Forest Ecology and Management 222(1-3):450-458. DOI: https://doi.org/10.1016/j.foreco.2005.10.051

Zhao, Y., M. Krzic., C.E. Bulmer., M.G. Schmidt and S.W. Simard. 2010. Relative bulk density as a measure of compaction and its influence on tree height. Canadian Journal of Forest Research 40:1724–1734. DOI: https://doi.org/10.1139/X10-115

Descargas

Publicado

2016-02-25

Cómo citar

Solgi, A., Naghdi, R., & Nikooy, M. (2016). Effects of Skidder on Soil Compaction, Forest Floor Removal and Rut Formation. Madera Y Bosques, 21(2). https://doi.org/10.21829/myb.2015.212451
Metrics
Vistas/Descargas
  • Resumen
    901
  • PDF
    232
  • HTML
    424

Número

Sección

Artículos Científicos

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.