Vol. 24 (2018): Número especial. Carbono en ecosistemas terrestres
Sección 2

Bioenergía a partir de residuos forestales y de madera

Neydeli Ayala-Mendivil
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C.
Biografía
Georgina Sandoval
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C.
Biografía

Publicado 2018-10-25

Palabras clave

  • biomasa,
  • procesos bioquímicos,
  • procesos termoquímicos

Resumen

Una de las prioridades del mundo actual es la generación de bioenergéticos sustentables y amigables con el medio ambiente, para lo cual son necesarios cambios en los modelos de producción y utilización de energía. El uso de residuos forestales como una fuente de biomasa para la generación de bioenergéticos representa una alternativa potencial, ya que genera un biocombustible menos contaminante en comparación con los de origen fósil. Además, mientras que el calor y la electricidad pueden ser generados por otras alternativas renovables como viento, sol y agua, la producción de combustibles y la síntesis de productos químicos requieren transformar la biomasa. La elección de la estrategia de conversión depende del tipo, propiedades y cantidad de la biomasa disponible, de los requerimientos de uso, así como de los estándares ambientales y condiciones económicas. El objetivo del presente trabajo es describir los diferentes procesos a través de los cuales se puede obtener energía a partir de residuos de biomasa forestal, así como el potencial que tienen estos residuos en la producción de los diferentes tipos de bioenergéticos. Asimismo, se describen los desafíos y problemas que aún siguen sin resolver, como lo son la recolección de residuos, escalamiento y costos de producción.

Citas

  1. Ahring, B. K., & Westermann, P. (2007). Coproduction of Bioethanol with Other Biofuels. In L. Olsson (ed.), Biofuels (pp. 289–302). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/10_2007_067
  2. Akhtari, S., Sowlati, T., & Day, K. (2014). Economic feasibility of utilizing forest biomass in district energy systems - A review. Renewable and Sustainable Energy Reviews, 33, 117–127. doi: 10.1016/j.rser.2014.01.058
  3. Ayala-Mendivil, N., De Los Angeles Calixto-Romo, M., Amaya-Delgado, L., Casas-Godoy, L., & Sandoval, G. (2016). High throughput screening: Developed techniques for cellulolytic and xylanolytic activities assay. Combinatorial Chemistry and High Throughput Screening, 19(8). doi: 10.2174/1386207319666160810105808
  4. Baral, A., & Guha, G. S. (2004). Trees for carbon sequestration or fossil fuel substitution: The issue of cost vs. carbon benefit. Biomass and Bioenergy, 27(1), 41–55. doi: 10.1016/j.biombioe.2003.11.004
  5. Boucher, J., Chirat, C., & Lachenal, D. (2014). Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol. Energy Conversion and Management, 88, 1120–1126. doi: 10.1016/j.enconman.2014.05.104
  6. Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. doi: 10.1016/j.biombioe.2011.01.048
  7. Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (2007). Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? In L. Olsson (ed.), Biofuels (pp. 67–93). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/10_2007_064
  8. Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16(3), 1462–1476. doi: 10.1016/j.rser.2011.11.035
  9. Cheng, J. J., & Timilsina, G. R. (2011). Status and barriers of advanced biofuel technologies: A review. Renewable Energy, 36(12), 3541–3549. doi: 10.1016/j.renene.2011.04.031
  10. Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. doi: 10.1016/j.enconman.2010.01.015
  11. Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B., & Woess-Gallasch, S. (2009). Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling, 53(8), 434–447. doi: 10.1016/j.resconrec.2009.03.013
  12. Conde, L. A., Salas, G. V., Centeno, S. P., Leal, A., & Escalona, V. (2013). Tendencias de las emisiones. Inventario Nacional de Emisiones de Gases de Efecto Invernadero 1990-2010 (Vol. 1). México. doi: 10.1017/CBO9781107415324.004
  13. Cotana, F., Buratti, C., Barbanera, M., & Lascaro, E. (2015). Optimization of the steam explosion and enzymatic hydrolysis for sugars production from oak woods. Bioresource Technology, 198, 470–477. doi: 10.1016/j.biortech.2015.09.047
  14. Cullis, I. F., Saddler, J. N., & Mansfield, S. D. (2004). Effect of Initial Moisture Content and Chip Size on the Bioconversion Efficiency of Softwood Lignocellulosics. Biotechnology and Bioengineering, 85(4), 413–421. doi: 10.1002/bit.10905
  15. Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42, 1357–1378.
  16. Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology, 102(10), 6065–6072. doi: 10.1016/j.biortech.2011.03.032
  17. Di Risio, S., Hu, C. S., Saville, B. A., Liao, D., & Lortie, J. (2011). Large-scale, high-solids enzymatic hydrolysis of steam-exploded poplar. Biofuels, Bioproducts and Biorefining, 5(6), 609–620. doi: 10.1002/bbb.323
  18. Dien, B. S., Zhu, J. Y., Slininger, P. J., Kurtzman, C. P., Moser, B. R., O’Bryan, P. J., Gleisner, R., & Cotta, M. A. (2016). Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts. RSC Adv., 6(25), 20695–20705. doi: 10.1039/C5RA24430G
  19. Edenhofer, O. (2011). The IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. New York. Recuperado de https://www.pik-potsdam.de/members/edenh/talks/NewYork_Edenhofer_v03.pdf
  20. Flores, M. (2015). CEMIE-BIO: los frutos de la biomasa. PROYECTOFSE. Recuperado de http://proyectofse.mx/2016/02/03/cemie-bio-los-frutos-la-biomasa/
  21. Food and Agriculture Organization of the United Nations [FAO]. (1991). Aprovechamiento potencial de los residuos de madera para la producción de energía. In Conservación de energía en las industrias mecánicas forestales (Vol. 93). Roma, Italia: Food & Agriculture Org. Recuperado de http://www.fao.org/docrep/T0269S/T0269S00.htm
  22. Ge, X., Matsumoto, T., Keith, L., & Li, Y. (2015). Fungal Pretreatment of Albizia Chips for Enhanced Biogas Production by Solid-State Anaerobic Digestion. Energy & Fuels, 29(1), 200–204. doi: 10.1021/ef501922t
  23. Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. doi: 10.1016/j.rser.2013.06.033
  24. Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103(30), 11206–11210. doi: 10.1073/pnas.0604600103
  25. Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–7. doi: 10.1126/science.1137016
  26. Janzon, R., Schütt, F., Oldenburg, S., Fischer, E., Körner, I., & Saake, B. (2014). Steam pretreatment of spruce forest residues: Optimal conditions for biogas production and enzymatic hydrolysis. Carbohydrate Polymers, 100, 202–210. doi: 10.1016/j.carbpol.2013.04.093
  27. Jin, M., Slininger, P. J., Dien, B. S., Waghmode, S., Moser, B. R., Orjuela, A., Sousa, L. da C., & Balan, V. (2015). Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends in Biotechnology, 33(1), 43–54. doi: 10.1016/j.tibtech.2014.11.005
  28. Jin, S., Zhang, G., Zhang, P., Li, F., Fan, S., & Li, J. (2016). Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust. Bioresource Technology, 205, 34–39. doi: 10.1016/j.biortech.2016.01.019
  29. Kamei, I., Hirota, Y., & Meguro, S. (2012). Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresource Technology, 126, 137–141. doi: http://dx.doi.org/10.1016/j.biortech.2012.09.007
  30. Kar, S., Sona Gauri, S., Das, A., Jana, A., Maity, C., Mandal, A., Das Mohapatra, P. K., Pati, B. R., & Mondal, K. C. (2013). Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF. Bioprocess and Biosystems Engineering, 36(1), 57–68. doi: 10.1007/s00449-012-0761-x
  31. Kaushal, R., Sharma, N., & Dogra, V. (2016). Molecular characterization of glycosyl hydrolases of Trichoderma harzianum WF5 - A potential strain isolated from decaying wood and their application in bioconversion of poplar wood to ethanol under separate hydrolysis and fermentation. Biomass and Bioenergy, 85, 243–251. doi: 10.1016/j.biombioe.2015.12.010
  32. Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109(4), 1083–1087. doi: 10.1002/bit.24370
  33. Koppram, R., Tomás-Pejó, E., Xiros, C., & Olsson, L. (2014). Lignocellulosic ethanol production at high-gravity: Challenges and perspectives. Trends in Biotechnology, 32(1), 46–53. doi: 10.1016/j.tibtech.2013.10.003
  34. Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Ivar Korsbakken, J., Peters, G. P., …., & Zaehle, S. (2016). Global Carbon Budget 2016. Earth System Science Data, 8(2), 605–649. doi: 10.5194/essd-8-605-2016
  35. Lee, J.-E., Vadlani, P. V., & Min, D. (2017). Sustainable Production of Microbial Lipids from Lignocellulosic Biomass Using Oleaginous Yeast Cultures. Journal of Sustainable Bioenergy Systems, 7(1), 36–50. doi: 10.4236/jsbs.2017.71004
  36. Lee, S., & Shah, Y. T. (2012). Biofuels and bioenergy: processes and technologies. (S. Lee & Y. T. Shah, Eds.). London UK: CRC Press Inc.
  37. Lian, J., Garcia-Perez, M., Coates, R., Wu, H., & Chen, S. (2012). Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technology, 118, 177–186. doi: 10.1016/j.biortech.2012.05.010
  38. Liguori, R., Amore, A., & Faraco, V. (2013). Waste valorization by biotechnological conversion into added value products. Applied Microbiology and Biotechnology, 97(14), 6129–6147. doi: 10.1007/s00253-013-5014-7
  39. López, M. J., Suárez-Estrella, F., Vargas-García, M. C., López-González, J. A., Verstichel, S., Debeer, L., Wierinck, I., & Moreno, J. (2013). Biodelignification of agricultural and forest wastes: Effect on anaerobic digestion. Biomass and Bioenergy, 58, 343–349. doi: 10.1016/j.biombioe.2013.10.021
  40. Martínez, J. M. R., Lora, E. E. S., & González, L. N. L. (2015). Bioenergía: Fuentes, conversión y sustentabilidad. José María Rincón Martínez, Electo Eduardo Silva Lora.
  41. McKechnie, J., Colombo, S., Chen, J., Mabee, W., & Machlean, H. L. (2011). Forest Bioenergy or Forest Carbon? Assessing Trade - Offs in Greenhouse Gas Mitigation with Wood - Based Fuels. Environ. Sci. Technol., 45(2), 789–795. doi: 10.1021/es1024004
  42. McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Reviews Issue, 83(1), 47–54. doi: http://dx.doi.org/10.1016/S0960-8524(01)00119-5
  43. Messaoudi, Y., Smichi, N., Allaf, T., Allaf, K., & Gargouri, M. (2015). Effect of instant controlled pressure drop pretreatment of lignocellulosic wastes on enzymatic saccharification and ethanol production. Industrial Crops and Products, 77, 910–919. doi: 10.1016/j.indcrop.2015.09.074
  44. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. doi: 10.1016/j.biortech.2004.06.025
  45. Niehus, X., Crutz-Le Coq, A.-M., Sandoval, G., Nicaud, J. M., & Ledesma-Amaro, R. (2017). Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnology for Biofuels, In Press.
  46. Nitsos, C. K., Choli-Papadopoulou, T., Matis, K. A., & Triantafyllidis, K. S. (2016). Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustainable Chemistry and Engineering, 4(9), 4529–4544. doi: 10.1021/acssuschemeng.6b00535
  47. Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2014). Mixed biomass pellets for thermal energy production: A review of combustion models. Applied Energy, 127, 135–140. doi: 10.1016/j.apenergy.2014.04.042
  48. Nussbaumer, T. (2003). Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy and Fuels, 17(6), 1510–1521. doi: 10.1021/ef030031q
  49. Rittmann, B. E. (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100(2), 203–212. doi: 10.1002/bit.21875
  50. Rodríguez, S., & Sanromán, M. A. (2005). Application of solid-state fermentation to ligninolytic enzyme production. Biochemical Engineering Journal, 22(3), 211–219. doi: 10.1016/j.bej.2004.09.013
  51. Salinas, E., & Gasca, V. (2009). Los biocmbustibles. El Cotidiano, (157), 75–82. Recuperado de http://www.redalyc.org/pdf/325/32512739009.pdf
  52. Sasaki, C., Kushiki, Y., Asada, C., & Nakamura, Y. (2014). Acetone-butanol-ethanol production by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) methods using acorns and wood chips of Quercus acutissima as a carbon source. Industrial Crops and Products, 62, 286–292. doi: 10.1016/j.indcrop.2014.08.049
  53. Saxena, R. C., Adhikari, D. K., & Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews, 13(1), 167–178. doi: 10.1016/j.rser.2007.07.011
  54. Secretaría de Medio Ambiente y Recursos Naturales [Semarnat]. (2015). Anuario Estadístico de la Producción Forestal 2015. Coyoacán, Ciudad de México. Recuperado de https://www.gob.mx/semarnat/documentos/anuarios-estadisticos-forestales
  55. Tarelho, L. A. C., Neves, D. S. F., & Matos, M. A. A. (2011). Forest biomass waste combustion in a pilot-scale bubbling fluidised bed combustor. Biomass and Bioenergy, 35(4), 1511–1523. doi: 10.1016/j.biombioe.2010.12.052
  56. Tsuji, M., Yokota, Y., Kudoh, S., & Hoshino, T. (2014). Improvement of direct ethanol fermentation from woody biomasses by the Antarctic basidiomycetous yeast, Mrakia blollopis, under a low temperature condition. Cryobiology, 68(2), 303–305. doi: 10.1016/j.cryobiol.2013.12.008
  57. Vanneste, J., Van Gerven, T., Vander Putten, E., Van der Bruggen, B., & Helsen, L. (2011). Energetic valorization of wood waste: Estimation of the reduction in CO2 emissions. Science of the Total Environment, 409(19), 3595–3602. doi: 10.1016/j.scitotenv.2011.04.059
  58. Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30(6), 1447–1457. doi: 10.1016/j.biotechadv.2012.03.003
  59. Wang, Z. J., Zhu, J. Y., Zalesny, R. S., & Chen, K. F. (2012). Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel, 95, 606–614. doi: 10.1016/j.fuel.2011.12.032
  60. Zheng, J., & Rehmann, L. (2014). Extrusion pretreatment of lignocellulosic biomass: A review. International Journal of Molecular Sciences, 15(10), 18967–18984. doi: 10.3390/ijms151018967