Bioenergía a partir de residuos forestales y de madera
DOI:
https://doi.org/10.21829/myb.2018.2401877Palabras clave:
biomasa, procesos bioquímicos, procesos termoquímicosResumen
Una de las prioridades del mundo actual es la generación de bioenergéticos sustentables y amigables con el medio ambiente, para lo cual son necesarios cambios en los modelos de producción y utilización de energía. El uso de residuos forestales como una fuente de biomasa para la generación de bioenergéticos representa una alternativa potencial, ya que genera un biocombustible menos contaminante en comparación con los de origen fósil. Además, mientras que el calor y la electricidad pueden ser generados por otras alternativas renovables como viento, sol y agua, la producción de combustibles y la síntesis de productos químicos requieren transformar la biomasa. La elección de la estrategia de conversión depende del tipo, propiedades y cantidad de la biomasa disponible, de los requerimientos de uso, así como de los estándares ambientales y condiciones económicas. El objetivo del presente trabajo es describir los diferentes procesos a través de los cuales se puede obtener energía a partir de residuos de biomasa forestal, así como el potencial que tienen estos residuos en la producción de los diferentes tipos de bioenergéticos. Asimismo, se describen los desafíos y problemas que aún siguen sin resolver, como lo son la recolección de residuos, escalamiento y costos de producción.
Descargas
Citas
Ahring, B. K., & Westermann, P. (2007). Coproduction of Bioethanol with Other Biofuels. In L. Olsson (ed.), Biofuels (pp. 289–302). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/10_2007_067 DOI: https://doi.org/10.1007/10_2007_067
Akhtari, S., Sowlati, T., & Day, K. (2014). Economic feasibility of utilizing forest biomass in district energy systems - A review. Renewable and Sustainable Energy Reviews, 33, 117–127. doi: 10.1016/j.rser.2014.01.058 DOI: https://doi.org/10.1016/j.rser.2014.01.058
Ayala-Mendivil, N., De Los Angeles Calixto-Romo, M., Amaya-Delgado, L., Casas-Godoy, L., & Sandoval, G. (2016). High throughput screening: Developed techniques for cellulolytic and xylanolytic activities assay. Combinatorial Chemistry and High Throughput Screening, 19(8). doi: 10.2174/1386207319666160810105808 DOI: https://doi.org/10.2174/1386207319666160810105808
Baral, A., & Guha, G. S. (2004). Trees for carbon sequestration or fossil fuel substitution: The issue of cost vs. carbon benefit. Biomass and Bioenergy, 27(1), 41–55. doi: 10.1016/j.biombioe.2003.11.004 DOI: https://doi.org/10.1016/j.biombioe.2003.11.004
Boucher, J., Chirat, C., & Lachenal, D. (2014). Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol. Energy Conversion and Management, 88, 1120–1126. doi: 10.1016/j.enconman.2014.05.104 DOI: https://doi.org/10.1016/j.enconman.2014.05.104
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. doi: 10.1016/j.biombioe.2011.01.048 DOI: https://doi.org/10.1016/j.biombioe.2011.01.048
Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (2007). Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? In L. Olsson (ed.), Biofuels (pp. 67–93). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/10_2007_064 DOI: https://doi.org/10.1007/10_2007_064
Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16(3), 1462–1476. doi: 10.1016/j.rser.2011.11.035 DOI: https://doi.org/10.1016/j.rser.2011.11.035
Cheng, J. J., & Timilsina, G. R. (2011). Status and barriers of advanced biofuel technologies: A review. Renewable Energy, 36(12), 3541–3549. doi: 10.1016/j.renene.2011.04.031 DOI: https://doi.org/10.1016/j.renene.2011.04.031
Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. doi: 10.1016/j.enconman.2010.01.015 DOI: https://doi.org/10.1016/j.enconman.2010.01.015
Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B., & Woess-Gallasch, S. (2009). Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling, 53(8), 434–447. doi: 10.1016/j.resconrec.2009.03.013 DOI: https://doi.org/10.1016/j.resconrec.2009.03.013
Conde, L. A., Salas, G. V., Centeno, S. P., Leal, A., & Escalona, V. (2013). Tendencias de las emisiones. Inventario Nacional de Emisiones de Gases de Efecto Invernadero 1990-2010 (Vol. 1). México. doi: 10.1017/CBO9781107415324.004 DOI: https://doi.org/10.1017/CBO9781107415324.004
Cotana, F., Buratti, C., Barbanera, M., & Lascaro, E. (2015). Optimization of the steam explosion and enzymatic hydrolysis for sugars production from oak woods. Bioresource Technology, 198, 470–477. doi: 10.1016/j.biortech.2015.09.047 DOI: https://doi.org/10.1016/j.biortech.2015.09.047
Cullis, I. F., Saddler, J. N., & Mansfield, S. D. (2004). Effect of Initial Moisture Content and Chip Size on the Bioconversion Efficiency of Softwood Lignocellulosics. Biotechnology and Bioengineering, 85(4), 413–421. doi: 10.1002/bit.10905 DOI: https://doi.org/10.1002/bit.10905
Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42, 1357–1378. DOI: https://doi.org/10.1016/S0196-8904(00)00137-0
Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology, 102(10), 6065–6072. doi: 10.1016/j.biortech.2011.03.032 DOI: https://doi.org/10.1016/j.biortech.2011.03.032
Di Risio, S., Hu, C. S., Saville, B. A., Liao, D., & Lortie, J. (2011). Large-scale, high-solids enzymatic hydrolysis of steam-exploded poplar. Biofuels, Bioproducts and Biorefining, 5(6), 609–620. doi: 10.1002/bbb.323 DOI: https://doi.org/10.1002/bbb.323
Dien, B. S., Zhu, J. Y., Slininger, P. J., Kurtzman, C. P., Moser, B. R., O’Bryan, P. J., Gleisner, R., & Cotta, M. A. (2016). Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts. RSC Adv., 6(25), 20695–20705. doi: 10.1039/C5RA24430G DOI: https://doi.org/10.1039/C5RA24430G
Edenhofer, O. (2011). The IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. New York. Recuperado de https://www.pik-potsdam.de/members/edenh/talks/NewYork_Edenhofer_v03.pdf
Flores, M. (2015). CEMIE-BIO: los frutos de la biomasa. PROYECTOFSE. Recuperado de http://proyectofse.mx/2016/02/03/cemie-bio-los-frutos-la-biomasa/
Food and Agriculture Organization of the United Nations [FAO]. (1991). Aprovechamiento potencial de los residuos de madera para la producción de energía. In Conservación de energía en las industrias mecánicas forestales (Vol. 93). Roma, Italia: Food & Agriculture Org. Recuperado de http://www.fao.org/docrep/T0269S/T0269S00.htm
Ge, X., Matsumoto, T., Keith, L., & Li, Y. (2015). Fungal Pretreatment of Albizia Chips for Enhanced Biogas Production by Solid-State Anaerobic Digestion. Energy & Fuels, 29(1), 200–204. doi: 10.1021/ef501922t DOI: https://doi.org/10.1021/ef501922t
Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. doi: 10.1016/j.rser.2013.06.033 DOI: https://doi.org/10.1016/j.rser.2013.06.033
Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103(30), 11206–11210. doi: 10.1073/pnas.0604600103 DOI: https://doi.org/10.1073/pnas.0604600103
Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–7. doi: 10.1126/science.1137016 DOI: https://doi.org/10.1126/science.1137016
Janzon, R., Schütt, F., Oldenburg, S., Fischer, E., Körner, I., & Saake, B. (2014). Steam pretreatment of spruce forest residues: Optimal conditions for biogas production and enzymatic hydrolysis. Carbohydrate Polymers, 100, 202–210. doi: 10.1016/j.carbpol.2013.04.093 DOI: https://doi.org/10.1016/j.carbpol.2013.04.093
Jin, M., Slininger, P. J., Dien, B. S., Waghmode, S., Moser, B. R., Orjuela, A., Sousa, L. da C., & Balan, V. (2015). Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends in Biotechnology, 33(1), 43–54. doi: 10.1016/j.tibtech.2014.11.005 DOI: https://doi.org/10.1016/j.tibtech.2014.11.005
Jin, S., Zhang, G., Zhang, P., Li, F., Fan, S., & Li, J. (2016). Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust. Bioresource Technology, 205, 34–39. doi: 10.1016/j.biortech.2016.01.019 DOI: https://doi.org/10.1016/j.biortech.2016.01.019
Kamei, I., Hirota, Y., & Meguro, S. (2012). Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresource Technology, 126, 137–141. doi: http://dx.doi.org/10.1016/j.biortech.2012.09.007 DOI: https://doi.org/10.1016/j.biortech.2012.09.007
Kar, S., Sona Gauri, S., Das, A., Jana, A., Maity, C., Mandal, A., Das Mohapatra, P. K., Pati, B. R., & Mondal, K. C. (2013). Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF. Bioprocess and Biosystems Engineering, 36(1), 57–68. doi: 10.1007/s00449-012-0761-x DOI: https://doi.org/10.1007/s00449-012-0761-x
Kaushal, R., Sharma, N., & Dogra, V. (2016). Molecular characterization of glycosyl hydrolases of Trichoderma harzianum WF5 - A potential strain isolated from decaying wood and their application in bioconversion of poplar wood to ethanol under separate hydrolysis and fermentation. Biomass and Bioenergy, 85, 243–251. doi: 10.1016/j.biombioe.2015.12.010 DOI: https://doi.org/10.1016/j.biombioe.2015.12.010
Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109(4), 1083–1087. doi: 10.1002/bit.24370 DOI: https://doi.org/10.1002/bit.24370
Koppram, R., Tomás-Pejó, E., Xiros, C., & Olsson, L. (2014). Lignocellulosic ethanol production at high-gravity: Challenges and perspectives. Trends in Biotechnology, 32(1), 46–53. doi: 10.1016/j.tibtech.2013.10.003 DOI: https://doi.org/10.1016/j.tibtech.2013.10.003
Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Ivar Korsbakken, J., Peters, G. P., …., & Zaehle, S. (2016). Global Carbon Budget 2016. Earth System Science Data, 8(2), 605–649. doi: 10.5194/essd-8-605-2016 DOI: https://doi.org/10.5194/essd-8-605-2016
Lee, J.-E., Vadlani, P. V., & Min, D. (2017). Sustainable Production of Microbial Lipids from Lignocellulosic Biomass Using Oleaginous Yeast Cultures. Journal of Sustainable Bioenergy Systems, 7(1), 36–50. doi: 10.4236/jsbs.2017.71004 DOI: https://doi.org/10.4236/jsbs.2017.71004
Lee, S., & Shah, Y. T. (2012). Biofuels and bioenergy: processes and technologies. (S. Lee & Y. T. Shah, Eds.). London UK: CRC Press Inc. DOI: https://doi.org/10.1201/b12510
Lian, J., Garcia-Perez, M., Coates, R., Wu, H., & Chen, S. (2012). Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technology, 118, 177–186. doi: 10.1016/j.biortech.2012.05.010 DOI: https://doi.org/10.1016/j.biortech.2012.05.010
Liguori, R., Amore, A., & Faraco, V. (2013). Waste valorization by biotechnological conversion into added value products. Applied Microbiology and Biotechnology, 97(14), 6129–6147. doi: 10.1007/s00253-013-5014-7 DOI: https://doi.org/10.1007/s00253-013-5014-7
López, M. J., Suárez-Estrella, F., Vargas-García, M. C., López-González, J. A., Verstichel, S., Debeer, L., Wierinck, I., & Moreno, J. (2013). Biodelignification of agricultural and forest wastes: Effect on anaerobic digestion. Biomass and Bioenergy, 58, 343–349. doi: 10.1016/j.biombioe.2013.10.021 DOI: https://doi.org/10.1016/j.biombioe.2013.10.021
Martínez, J. M. R., Lora, E. E. S., & González, L. N. L. (2015). Bioenergía: Fuentes, conversión y sustentabilidad. José María Rincón Martínez, Electo Eduardo Silva Lora.
McKechnie, J., Colombo, S., Chen, J., Mabee, W., & Machlean, H. L. (2011). Forest Bioenergy or Forest Carbon? Assessing Trade - Offs in Greenhouse Gas Mitigation with Wood - Based Fuels. Environ. Sci. Technol., 45(2), 789–795. doi: 10.1021/es1024004 DOI: https://doi.org/10.1021/es1024004
McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Reviews Issue, 83(1), 47–54. doi: http://dx.doi.org/10.1016/S0960-8524(01)00119-5 DOI: https://doi.org/10.1016/S0960-8524(01)00119-5
Messaoudi, Y., Smichi, N., Allaf, T., Allaf, K., & Gargouri, M. (2015). Effect of instant controlled pressure drop pretreatment of lignocellulosic wastes on enzymatic saccharification and ethanol production. Industrial Crops and Products, 77, 910–919. doi: 10.1016/j.indcrop.2015.09.074 DOI: https://doi.org/10.1016/j.indcrop.2015.09.074
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. doi: 10.1016/j.biortech.2004.06.025 DOI: https://doi.org/10.1016/j.biortech.2004.06.025
Niehus, X., Crutz-Le Coq, A.-M., Sandoval, G., Nicaud, J. M., & Ledesma-Amaro, R. (2017). Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnology for Biofuels, In Press. DOI: https://doi.org/10.1186/s13068-018-1010-6
Nitsos, C. K., Choli-Papadopoulou, T., Matis, K. A., & Triantafyllidis, K. S. (2016). Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustainable Chemistry and Engineering, 4(9), 4529–4544. doi: 10.1021/acssuschemeng.6b00535 DOI: https://doi.org/10.1021/acssuschemeng.6b00535
Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2014). Mixed biomass pellets for thermal energy production: A review of combustion models. Applied Energy, 127, 135–140. doi: 10.1016/j.apenergy.2014.04.042 DOI: https://doi.org/10.1016/j.apenergy.2014.04.042
Nussbaumer, T. (2003). Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy and Fuels, 17(6), 1510–1521. doi: 10.1021/ef030031q DOI: https://doi.org/10.1021/ef030031q
Rittmann, B. E. (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100(2), 203–212. doi: 10.1002/bit.21875 DOI: https://doi.org/10.1002/bit.21875
Rodríguez, S., & Sanromán, M. A. (2005). Application of solid-state fermentation to ligninolytic enzyme production. Biochemical Engineering Journal, 22(3), 211–219. doi: 10.1016/j.bej.2004.09.013 DOI: https://doi.org/10.1016/j.bej.2004.09.013
Salinas, E., & Gasca, V. (2009). Los biocmbustibles. El Cotidiano, (157), 75–82. Recuperado de http://www.redalyc.org/pdf/325/32512739009.pdf
Sasaki, C., Kushiki, Y., Asada, C., & Nakamura, Y. (2014). Acetone-butanol-ethanol production by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) methods using acorns and wood chips of Quercus acutissima as a carbon source. Industrial Crops and Products, 62, 286–292. doi: 10.1016/j.indcrop.2014.08.049 DOI: https://doi.org/10.1016/j.indcrop.2014.08.049
Saxena, R. C., Adhikari, D. K., & Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews, 13(1), 167–178. doi: 10.1016/j.rser.2007.07.011 DOI: https://doi.org/10.1016/j.rser.2007.07.011
Secretaría de Medio Ambiente y Recursos Naturales [Semarnat]. (2015). Anuario Estadístico de la Producción Forestal 2015. Coyoacán, Ciudad de México. Recuperado de https://www.gob.mx/semarnat/documentos/anuarios-estadisticos-forestales
Tarelho, L. A. C., Neves, D. S. F., & Matos, M. A. A. (2011). Forest biomass waste combustion in a pilot-scale bubbling fluidised bed combustor. Biomass and Bioenergy, 35(4), 1511–1523. doi: 10.1016/j.biombioe.2010.12.052 DOI: https://doi.org/10.1016/j.biombioe.2010.12.052
Tsuji, M., Yokota, Y., Kudoh, S., & Hoshino, T. (2014). Improvement of direct ethanol fermentation from woody biomasses by the Antarctic basidiomycetous yeast, Mrakia blollopis, under a low temperature condition. Cryobiology, 68(2), 303–305. doi: 10.1016/j.cryobiol.2013.12.008 DOI: https://doi.org/10.1016/j.cryobiol.2013.12.008
Vanneste, J., Van Gerven, T., Vander Putten, E., Van der Bruggen, B., & Helsen, L. (2011). Energetic valorization of wood waste: Estimation of the reduction in CO2 emissions. Science of the Total Environment, 409(19), 3595–3602. doi: 10.1016/j.scitotenv.2011.04.059 DOI: https://doi.org/10.1016/j.scitotenv.2011.04.059
Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30(6), 1447–1457. doi: 10.1016/j.biotechadv.2012.03.003 DOI: https://doi.org/10.1016/j.biotechadv.2012.03.003
Wang, Z. J., Zhu, J. Y., Zalesny, R. S., & Chen, K. F. (2012). Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel, 95, 606–614. doi: 10.1016/j.fuel.2011.12.032 DOI: https://doi.org/10.1016/j.fuel.2011.12.032
Zheng, J., & Rehmann, L. (2014). Extrusion pretreatment of lignocellulosic biomass: A review. International Journal of Molecular Sciences, 15(10), 18967–18984. doi: 10.3390/ijms151018967 DOI: https://doi.org/10.3390/ijms151018967
Publicado
Cómo citar
-
Resumen2963
-
PDF1423
Número
Sección
Licencia
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.