Trayectorias sucesionales y tasa de cambio en bosques subtropicales de Quercus en el centro-occidente de México: evidencias de una red de sitios permanentes

Autores/as

DOI:

https://doi.org/10.21829/myb.2018.2431412

Palabras clave:

Análisis de Correspondencia Desprovisto de Tendencia, modelos lineales generalizados, sucesión forestal, progresivo, retrogresivo, fisiografía

Resumen

Se estudiaron las tendencias de sucesión forestal en bosques subtropicales de alta montaña dominados por Quercus en el centro-occidente de México; el propósito de este estudio fue responder las siguientes preguntas de investigación: (1) ¿Cómo se desarrollan las trayectorias sucesionales en tres zonas florísticas contrastantes? (2) ¿Cuál es la magnitud de la tasa de cambio sucesional en diferentes escalas temporales? (3) ¿Cuáles son los principales factores ambientales que contribuyen con los patrones observados en la sucesión forestal? Los datos para el presente estudio provienen de 86 sitios permanentes de 500 m2 establecidos a lo largo de un gradiente florístico de 10 km. Se utilizó Análisis de Correspondencia Desprovisto de Tendencia para cuantificar las trayectorias sucesionales, así como para estimar la magnitud de la tasa de cambio en cada una de las zonas florísticas estudiadas. Para discernir los factores ambientales significativos con relación a las trayectorias sucesionales y las tasas de cambio del último censo, se utilizaron modelos lineales generalizados con error gaussiano. Los resultados muestran que las trayectorias sucesionales no fueron deterministas para las tres zonas florísticas en las diferentes escalas de tiempo analizadas; por el contrario se observaron cuatro rutas diferentes de sucesión i) sitios con desplazamiento notorio entre periodos de tiempo, acompañados por un desplazamiento indeterminado sobre el diagrama de ordenación; ii) sitios con una tasa de cambio moderada y movimiento uniforme a lo largo del espacio de ordenación; iii) un pequeño número de sitios con cambio leve y; iv) pocos sitios sin cambio aparente. Variables relacionadas con el suelo como pH, P, N, Mg y Mn, así como la pendiente y la posición en la catena, fueron las variables explicativas que contribuyeron a explicar la tasa de cambio en los procesos sucesionales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Miguel Olvera-Vargas,

Universidad de Guadalajara

Investigador en Ecología y Silvicultura en Ecosistemas de Montaña

Departamento de Ecología y Recursos Naturales

Centro Universitario de la Costa Sur

 

Blanca Lorena Figueroa-Rangel,

Universidad de Guadalajara

Investigadora en Paleoecología y Ecología Forestal.

Departamento de Ecología y Recursos Naturales

Centro Universitario de la Costa Sur

 

Citas

Beers, T. W., Dress, P. E., & Wensel, L. C. (1966). Aspect transformation in site productivity research. Journal of Forestry, 64(10), 691-692. DOI: https://doi.org/10.1093/jof/64.10.692

Bigelow, S. W., & Canham, C. D. (2002). Community organization of tree species along soil gradients in a north-eastern USA forest. Journal of Ecology, 90,188-200 DOI: https://doi.org/10.1046/j.0022-0477.2001.00655.x

Bose, A. K., Schelhaas, M.-J., Mazerolle, M. J., & Bongers, F. (2014). Temperate forest development during secondary succession: effects of soil, dominant species and management. European Journal Forest Research, 133, 511-523. DOI: https://doi.org/10.1007/s10342-014-0781-y

Brown, J. H., Ernest, S. K. M., Parody, J. M., & Haskell, J. P. (2001). Regulation of diversity: maintenance of species richness in changing environments. Oecologia, 126(3), 321-332. DOI: https://doi.org/10.1007/s004420000536

Brown, C. H. Liu, J., Yan, J., & Johnstone. J. F. (2015). Disentangling legacy effects from environmental filters of postfire assembly of boreal tree assemblages. Ecology, 96(11) 3023-3032. DOI: https://doi.org/10.1890/14-2302.1

Chase, J. M. (2003). Community assembly: when should history matter? Oecologia, 136(4), 48-498. DOI: https://doi.org/10.1007/s00442-003-1311-7

Christensen Jr., N. L. (2014). An historical perspective on forest succession and its relevance to ecosystem restoration and conservation practice in North America. Forest Ecology and Management, 330, 312-322. DOI: https://doi.org/10.1016/j.foreco.2014.07.026

Crawley, M.J. (2013). The R Book (2nd ed.). West Sussex, UK: Wiley & Sons, Ltd.

Cuevas-Guzmán, R., Benz, B. F., & Jardel, P. E. (1997). Sierra de Manantlán. In D. S. Heywood, O. Herrera-MacBryde, J. Villalobos, & A. C. Hamilton (Eds.), Centres of plant diversity (Vol. III. The Americas, pp. 158-161). Washington, D.C.: World Conservation Union-World Wildlife Fund.

Dalberg-Poulsen, A., Tuomisto, H., & Blaslev, H. (2006). Edaphic and floristic variation within a 1-ha plot of lowland Amazonian rain forest. Biotropica, 38:468–478. DOI: https://doi.org/10.1111/j.1744-7429.2006.00168.x

del Moral, R., Saura, J. M., & Emenegger, J. N. (2010). Primary succession trajectories on a barren plain, Mount St. Helens, Washington. Journal of Vegetation Science, 21, 857–867. DOI: https://doi.org/10.1111/j.1654-1103.2010.01189.x

DeSantis, R. D., Hallgren, S. W., Lynch, T. B., Burton, J. A., & Palmer, M. (2010). Long-term directional changes in upland Quercus forests throughout Oklahoma, USA. Journal of Vegetation Science, 21, 606-615. DOI: https://doi.org/10.1111/j.1654-1103.2010.01168.x

Freeman, J. E., & Kobziar, L. N. (2011). Tracking postfire successional trajectories in a plant community adapted to high-severity fire. Ecological Applications, 21(1), 61-74. DOI: https://doi.org/10.1890/09-0948.1

Harmon, M. E., & Pabst, M. E. (2015). Testing predictions of forest succession using long-term measurements: 100 yrs of observations in the Oregon Cascades. Journal of Vegetation Science, 26, 722-732. DOI: https://doi.org/10.1111/jvs.12273

Harvey, B. J., & Holzman, B. A. (2014). Divergent successional pathways of stand development following fire in a California closed-cone pine forest. Journal of Vegetation Science, 25, 88-99. DOI: https://doi.org/10.1111/jvs.12073

Higgins, S. I., Shackleton, C. M., & Robinson, E. R. (1999). Changes in woody community structure and composition under contrasting landuse systems in a semi-arid savanna, South Africa. Journal of Biogeography, 26, 619-627. DOI: https://doi.org/10.1046/j.1365-2699.1999.t01-1-00317.x

Hill, M. O., & Gauch, H. G. J. (1980). Detrended correspondence analysis: an imporved ordination technique. Vegetatio, 42, 74-58. DOI: https://doi.org/10.1007/BF00048870

Hunt, S. L., Gordon, A. M., Morris, D. M., & Marek, G. (2003). Understory vegetation in northern Ontario jack pine and black spruce plantations: 20-year successional changes. Canadian Journal of Forest Research, 33, 1791-1803. DOI: https://doi.org/10.1139/x03-088

Husch, B., Miller, C. I., & Beers, T. W. (1982). Forest Mensuration (Third ed.). New York, US: Wiley, Ronald Press.

Johnson, E. A., & Miyanishi, K. (2008). Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419-431. DOI: https://doi.org/10.1111/j.1461-0248.2008.01173.x

Kariuki, M., Rolfe, M., Smith, R.G.B., Vanclay, J. K., & Kooyman, R.M. (2006). Diameter growth performance varies with species functional-group and habitat characteristics in subtropical rainforests. Forest Ecology and Management, 225:1–14. DOI: https://doi.org/10.1016/j.foreco.2005.07.016

Kneitel, J., & Chase, J. M. (2004). Trade-off in community ecology: linking spatial scales and species coexistence. Ecology Letters, 7, 69-80. DOI: https://doi.org/10.1046/j.1461-0248.2003.00551.x

Kreyling, J., Jentsch, A., & Beierkuhnlein, C. (2011). Stochastic trajectories of succession initiated by extreme climatic events. Ecology Letters, 14, 758-764. DOI: https://doi.org/10.1111/j.1461-0248.2011.01637.x

Legendre, P., & Fortin, M.-J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107-138. DOI: https://doi.org/10.1007/BF00048036

Li, S., Cadotte, M. W., Meiners, S. J., Zhichao Pu, Z., Fukami, T., & Jiang, L. (2016). Convergence and divergence in a long-term old-field succession: the importance of spatial scale and species abundance. Ecology Letters, 19(9), 1101–1109 DOI: https://doi.org/10.1111/ele.12647

Lohbeck, M., Poorter, L., Martínez-Ramos, M. & Bongers, F. (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology Letters, 96:1242–1252. DOI: https://doi.org/10.1890/14-0472.1

Matthews, J. W., & Endress, A. G. (2010). Rate of succession in restored wetlands and the role of site context. Applied Vegetation Science, 13, 346-355. DOI: https://doi.org/10.1111/j.1654-109X.2010.01076.x

McCune, B., & Allen, T. F. H. (1984). Will similar forests develop on similar sites? Canadian Journal of Botany, 63, 367-376. DOI: https://doi.org/10.1139/b85-043

Meiners, S. J., Cadotte, M. W., Fridley, J. D., Pickett, S. T. A., & Walker., L. R. (2015). Is successional research nearing its climax? New approaches for understanding dynamic communities. Functional Ecology, 29, 154-164. DOI: https://doi.org/10.1111/1365-2435.12391

Norden, N., Angarita, H. A., Bongers, F., Martínez-Ramos, M., Granzow-de la Cerda, I., van Breugel, M., . . ., & Chazdon, R. L. (2015). Successional dynamics in Neotropical forests are as uncertain as they are predictable. Procceedings of the National Academy of Sciences, 112(26), 8013-8018. DOI: https://doi.org/10.1073/pnas.1500403112

Oliver, C. D., & Larson, B. C. (1996). Forest Stand Dynamics. New York, USA: John Wiley and Sons.

Olvera-Vargas, M., Moreno-Gómez, S., & Figueroa-Rangel, B. L. (1996). Sitios permanentes de investigación Silvícola: Manual para su establecimiento (Primera ed.). Guadalajara, Jalisco. México: Universidad de Guadalajara.

Olvera-Vargas, M., Figueroa-Rangel, B. L., & Vázquez-López, J. M. (2010). Is there environmental differentiation in the Quercus dominated forests of west-central Mexico? Plant Ecology, 211, 321–335. DOI: https://doi.org/10.1007/s11258-010-9792-z

Olvera-Vargas, M., Figueroa-Rangel, B. L., & Vázquez-López, J. M. (2015). Tree mortality and recruitment in heterogeneous stands of sub-tropical mixed-oak forests in west-central Mexico. Interciencia, 40(4), 233-240.

Patterson, H. D. (1950). Sampling on successive occasions with partial replacement of units. Journal of the Royal Statistical Society. Series B, 12, 241-255. DOI: https://doi.org/10.1111/j.2517-6161.1950.tb00058.x

Peltzer, D. A., Wardle, D. A., Allison, V. J., Baisden, W. T., Bardgett, R. D., Chadwick, O. A., . . ., & Walker, L. R. (2010). Understanding ecosystem retrogression. Ecological Monographs, 80(4), 509-529. DOI: https://doi.org/10.1890/09-1552.1

Prach, K., Tichy, L., Lencova, K., Adamek, M., Koutechy, T., Sadlo, J., . . ., & Rehounkova, K. (2016). Does succession run towards potential natural vegetation? An analysis across seres. Journal of Vegetation Science, 27, 515-523. DOI: https://doi.org/10.1111/jvs.12383

Prach, K., & Walker, L. R. (2011). Four opportunities for studies of ecological succession. Trends in Ecology and Evolution, 26(3), 119-123. DOI: https://doi.org/10.1016/j.tree.2010.12.007

R Core Team, 2017. R: A language and environment for statistical computing version 3.4.3. ed. Vienna, Austria: A foundation for Statistical Computing.

Rebele, F. (2013). Differential succession towards woodland along a nutrient gradient. Applied Vegetation Science, 16, 365-378. DOI: https://doi.org/10.1111/avsc.12006

Robbins, J. A., & Matthews, J. A. (2010). Regional Variation in Successional Trajectories and Rates of Vegetation Change on Glacier Forelands in South-Central Norway. Arctic, Antarctic, and Alpine Research, 42(3), 351-361. DOI: https://doi.org/10.1657/1938-4246-42.3.351

Sokal, R., & Rohlf, J. (1981). Biometry. The Principles and Practice of Statistics in Biological Research (Second ed.). New York, USA: W.H. Freeman and Compay.

Ter Braak, C. J. F. (1995). Ordination. In R. H. G. Jongman, C. J. F. ter Braak, & O. F. R. Van Tongeren (Eds.), Data Analysis in Community and Landscape Ecology (pp. 91-169). Cambridge, United Kingdom: Cambridge University Press.

Turner, M. G., Baker, W. L., Peterson, C. J., & Peet, R. K. (1998). Factors influencing succession: Lessons from large, infrequent natural disturbances. Ecosystems, 1, 511-523. DOI: https://doi.org/10.1007/s100219900047

Walker, L. R., & del Moral, R. (2003). Primary Succession and Ecosystem Rehabilitation (First ed.). Cambridge, United Kingdom: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511615078

Walker, L. R., & del Moral, R. (2008). Transition Dynamics in Succession: Implications for Rates, Trajectories and Restoration. In K. Suding & R. J. Hobbs (Eds.), New Models for Ecosystem Dynamics and Restoration (First ed., pp. 1-7): Island Press.

Ware, K. D., & Cunia, T. (1962). Continuous forest inventory with partial replacement of samples. Forest Science Monographs, 3, 40.

Whittaker, R. J. (1991). The vegetation of the Storbreen gletschervorfeld, Jotunheimen, Norway. IV. Short-term vegetation change. Journal of Biogeography, 18, 41-52. DOI: https://doi.org/10.2307/2845243

Descargas

Publicado

2018-12-13

Cómo citar

Olvera-Vargas, M., & Figueroa-Rangel, B. L. (2018). Trayectorias sucesionales y tasa de cambio en bosques subtropicales de Quercus en el centro-occidente de México: evidencias de una red de sitios permanentes. Madera Y Bosques, 24(3). https://doi.org/10.21829/myb.2018.2431412
Metrics
Vistas/Descargas
  • Resumen
    1651
  • PDF
    282
  • LENS
    15

Número

Sección

Artículos Científicos

Métrica