Vol. 25 Núm. 2 (2019): Verano 2019
Artículos Científicos

Cultivo de Pleurotus ostreatus en viruta de pino: obtención de cepas y evaluación de su productividad

Gerardo Mata
Instituto de Ecología, A. C.
José Antonio Pérez-Torres
Universidad Veracruzana
Rosario Medel
Universidad Veracruzana
Rosalía Pérez-Merlo
Instituto de Ecología, A. C.
Dulce Salmones
Instituto de Ecología, A. C.

Publicado 2019-09-25

Palabras clave

  • crosses,
  • culture,
  • edible fungi,
  • Mexico,
  • mushrooms,
  • pine shavings
  • ...Más
    Menos
  • cruzas,
  • cultivo,
  • hongos comestibles,
  • México,
  • setas,
  • viruta de pino
  • ...Más
    Menos

Resumen

Con el fin de obtener cepas del hongo comestible Pleurotus ostreatus con capacidad de cultivarse en viruta de pino, se aislaron y propagaron in vitro 36 cultivos monospóricos, seleccionándose 6 cultivos de rápido crecimiento micelial para obtener cruzas interespecimen y dicarión-monocarión. Once de las cruzas obtenidas más sus 6 parentales fueron cultivadas in vitro para determinar sus áreas miceliales en viruta de pino y paja de cebada (testigo), seleccionándose seis cepas (3 cruzas, 3 parentales) para producir sus esporomas en viruta de pino y paja de cebada (testigo). A nivel in vitro, se encontraron diferencias significativas entre las áreas miceliales de monocariones y dicariones en los tratamientos (tiempo, sustrato) evaluados. En cuanto a productividad de los esporomas, los cultivos en paja de cebada alcanzaron valores más altos de eficiencias biológicas (22.6%-46.4%) y tasas de producción (0.31% - 0.77%) que en que viruta de pino (3.3% - 12%) y (0.03% - 0.11%), respectivamente. Los esporomas con diámetros de píleo de 5 cm a 9.9 cm de largo fueron más abundantes en ambos sustratos. En general, las cruzas superaron a sus parentales tanto en crecimiento micelial como en producción de esporomas, aunque se requiere más estudios que permitan incrementar la productividad de las cepas en este potencial residuo agroforestal.

Citas

  1. Bohlmann, J., (2012). Pine terpenoid defences in the mountain pine beetle epidemic and in other conifer pest interactions: Specialized enemies are eating holes into a diverse, dynamic and durable defence system. Tree Physiology, 32(8), 943–945. doi: 10.1093/treephys/tps065
  2. Brito, J. O., Silva, F. G., Leão, M. M., & Almeida, G. (2008). Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology, 99(18), 8545-8548. doi: 10.1016/j.biortech.2008.03.069
  3. Camassola, M., da Rosa, L. O., Calloni, R., Gaio, T. A. & Dillon, A. J. P. (2013). Secretion of laccase and manganese peroxidase by Pleurotus strains cultivate in solid-state using Pinus spp. sawdust. Brazilian Journal of Microbiology, 44(1), 207-213. doi: 10.1590/S1517-83822013005000006
  4. Chaturvedi, V. & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 3(5), 415-431. doi: 10.1007/s13205-013-0167-8
  5. Croan, S. C. (2000). Conversion of wood waste into value-added products by edible and medicinal Pleurotus (Fr.) P. Karst. Species (Agaricales s.l., Basidiomycetes). International Journal of Medicinal Mushrooms, 2, 73-80. doi: 10.1615/IntJMedMushr.v2.i1.80
  6. Croan, S. C. (2003). Utilization of treated conifer wood chips by Pleurotus (Fr.) P. Karst. species for cultivating mushrooms. Mushrooms International, 91, 4-7.
  7. Croan, S. C. (2004). Conversion of conifer wastes into edible and medicinal mushrooms Forest Products Journal, 54(2), 68-76.
  8. Esteves, B. & Pereira, H. (2009). Wood modification by heat treatment: a review. BioResources, 4, 370-404.
  9. Gaitán-Hernández, R. (2000). Obtención de cepas de Neolentinus suffrutescens por entrecruzamiento, su caracterización in vitro y producción de cuerpos fructíferos a nivel planta piloto. Revista Iberoamericana de Micología, 17, 20-24.
  10. Gaitán-Hernández, R. & Salmones, D. (2008). Obtaining and characterizing Pleurotus ostreatus strains for commercial cultivation under warm environmental conditions. Scientia Horticulturae, 118(2), 106-110. doi:10.1016/j.scienta.2008.05.029
  11. Gaitán-Hernández, R., Salmones, D., Pérez-Merlo, R., & Mata, G. (2009). Evaluación de la eficiencia biológica de cepas de Pleurotus pulmonarius en paja de cebada fermentada. Revista Mexicana de Micología, 30, 63-71.
  12. Galbe, M. & Zacchi, G. (2012). Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass and Bioenergy, 46, 70-78. doi: 10.1016/j.biombioe.2012.03.026
  13. Guadarrama-Mendoza, P.C., Valencia del Toro, G., Ramírez-Carrillo, R., Robles-Martínez, F., Yáñez-Fernández, J. Garín-Aguilar, M. E., Hernández, C. G., & Bravo-Villa, G. (2014). Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region. Brazilian Journal of Microbiology, 45(3), 861-872. doi: 10.1590/S1517-83822014000300016
  14. Gupta, B., Reddy, B. N., & Kotasthane, A. S. (2011). Molecular characterization and mating type analysis of oyster mushroom (Pleurotus spp.) using single basidiospores for strain improvement. World Journal of Microbiology and Biotechnology, 27(1), 1-9. doi: 10.1007/s11274-010-0419-2
  15. Guzmán, G., Mata, G., Salmones, D., Soto-Velazco, C. & Guzmán-Dávalos, L. (2013). El cultivo de hongos comestibles con especial atención a especies tropicales y subtropicales en esquilmos y residuos agroindustriales (3ª. Reimpresión). México, D. F.: Instituto Politécnico Nacional.
  16. Hatakka, A. & Hammel, K. E. (2010). Fungal biodegradation of lignocelluloses. In M. Hofrichter (Ed.), The Mycota: Industrial Applications X (pp. 319-340). Berlin: Springer. doi: 10.1007/978-3-642-11458-8_15
  17. James, T. Y (2015). Why mushrooms have evolved to be so promiscuous: insights from evolutionary and ecological patterns: review. Fungal Biology Reviews, 29(3-4), 167-178. doi: 10.1016/j.fbr.2015.10.002
  18. Jaramillo, S. & Albertó, E. (2013). Heat treatment of wheat straw by immersion in hot water decreases mushroom yield in Pleurotus ostreatus. Revista Iberoamericana de Micología, 30(2), 125-129. doi: 10.1016/j.riam.2012.11.004.
  19. Kumar, P., Barret, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial Engineering Chemical Research, 48, 3713-3729. doi: 10.1021/ie801542g
  20. Lettera, V., Del Vecchio, C., Piscitelli, A. & Sannia, G. (2011). Low impact strategies to improve ligninolytic enzyme production in filamentous fungi: the case of laccase in Pleurotus ostreatus. Comptes Rendus Biologies, 334(11), 781-788. doi: 10.1016/j.crvi.2011.06.001
  21. Lomelí-Ramírez, M. G., Ochoa-Ruiz, H. G., Fuentes-Talavera, F. J., García-Enríquez, S., Cerpa-Gallegos, M. A. & Silva-Guzmán, J. A. (2009). Evaluation of accelerated decay of wood plastic composites by Xylophagus fungi. International Biodeterioration and Biodegradation, 63(8), 1030-1035. doi: 10.1016/j.ibiod.2009.08.002
  22. Mata, G., Gaitán Hernández, R., & Salmones, D. (2016). La investigación en micología básica y aplicada: aportes para un desarrollo sustentable. In D. Martínez-Carrera & J. Ramírez-Juárez (eds.), Ciencia, tecnología e innovación en el sistema agroalimentario de México (pp. 695-719). Texcoco: Colegio de Postgraduados-AMC-CONACyT-UPAEP-IMINAP.
  23. Mata, G., Salmones, D., & Savoie, J. M. (2017). Las enzimas lignocelulolíticas de Pleurotus spp. In J. E. Sánchez & D. J. Royse (Eds.), La biología, el cultivo y las propiedades nutricionales y medicinales de las setas Pleurotus spp. (pp. 63-82). Tapachula: Ecosur.
  24. Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H., & Sederoff, R. (2010). Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiology, 154, 555–561. doi: 10.1104/pp.110.161281
  25. Pérez-Merlo, R. & Mata, G. (2005). Cultivo y selección de cepas de Pleurotus ostreatus y P. pulmonarius en viruta de pino: obtención de nuevas cepas y evaluación de su producción. Revista Mexicana de Micología, 20, 53-59.
  26. Piškur, B., Bajc, M., Robek, R., Humar, H., Sinjur, I., Kadunc, A., Oven, P., Rep, G., Petkovšek, S. A. S., Kraigher, H., Jurc, D., & Pohleven, F. (2011). Influence of Pleurotus ostreatus inoculation on wood degradation and fungal colonization. Bioresource Technology, 102(22), 10611–10617. doi: 10.1016/j.biortech.2011.09.008
  27. Royse, D. J. & Chalupa, W. (2009). Effects of spawn, supplement and phase II compost additions and time of re-casing second break compost on mushroom (Agaricus bisporus) yield and biological efficiency. Bioresource Technology, 100(21), 5277-582. doi: 10.1016/j.biortech.2009.02.074
  28. Salmones, D. (2017). Pleurotus djamor, un hongo con potencial aplicación biotecnológica para el neotrópico. Scientia Fungorum, 46, 73-85.
  29. Sánchez, J. E., Andrade, R.H., & Moreno, L. (2017). La protección del sustrato para el cultivo de Pleurotus spp. y otros hongos comestibles. In J. E. Sánchez & D. J. Royse (Eds.), La biología, el cultivo y las propiedades nutricionales y medicinales de las setas Pleurotus spp. (pp. 107-126). Tapachula: Ecosur.
  30. Sheng, Q. (2017). Producción commercial de la seta Pleurotus spp. In J. E. Sánchez & D. J. Royse (Eds.), La biología, el cultivo y las propiedades nutricionales y medicinales de las setas Pleurotus spp. (pp. 127-148). Tapachula: Ecosur
  31. Varnero, M. T., Quiroz, M. S., & Álvarez, C. H. (2010). Utilización de residuos forestales lignocelulósicos para producción del hongo ostra (Pleurotus ostreatus). Información Tecnológica, 21(2), 13-20.
  32. Vázquez-Covarrubias, D., Montes-Belmont, R., Jiménez Pérez, A. & Flores Moctezuma, H. E. (2013). Aceites esenciales y extractos acuosos para el manejo in vitro de Fusarium oxysporum f. sp. lycopersici y F. solani. Revista Mexicana de Fitopatología, 31(2), 170-179.
  33. Secretaría de Medio Ambiente y Recursos Naturales [Semarnat] (2016). Anuario Estadístico de la Producción Forestal 2015. México, D. F.: Secretaría de Medio Ambiente y Recursos Naturales.
  34. Wagner, A., Donaldson, L., & Ralph, J. (2012). Lignification and lignin manipulations in conifers. In L. Jouanin & C. Lapierre (Eds.), Advances in botanical research, vol. 61, Lignins: Biosynthesis, biodegradation and bioengineering (pp. 37-76). Burlington: Academic Press, Burlington.
  35. Wan, C. & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnological Advances, 30(6), 1447-1457. doi: 10.1016/j.biotechadv.2012.03.003