Biomecánica de los árboles: crecimiento, anatomía y morfología



Palabras clave:

biomecánica de las plantas, comportamiento estructural, materiales vegetales


Los árboles son los seres vivos más grandes y pesados que han poblado la Tierra. Para conseguirlo, cuentan con la madera (un material estructural excepcional) y con un sinnúmero de estrategias de diseño. Este trabajo es una revisión del estado del arte relacionada con las estrategias más importantes de crecimiento, anatomía y morfología que tienen los árboles, destacando conceptos generales relacionados con atributos estructurales que tienen que ver con la biomecánica de las plantas. Asimismo, este artículo resalta las características de los materiales naturales vegetales que poseen una organización jerárquica y que, en su mayoría, son materiales compuestos reforzados con fibras, materiales con estructura celular o ambos, como la madera.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Gustavo Vargas-Silva,

Angelo State University

Angelo State University. David L. Hirschfeld Department of Engineering


Archer, R. R. (1987). Growth stresses and strains in trees. Berlin: Springer. DOI:

Barthélémy, D. & Caraglio, Y. (2007). Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 99(3), 375-407. doi: 10.1093/aob/mcl260 DOI:

Conn, A., Pedmale, U. V., Chory, J., Stevens, C. F., & Navlakha, S. (2017). A statistical description of plant shoot architecture. Current Biology, 27(14), 2078-2088. doi: 10.1016/j.cub.2017.06.009 DOI:

Crawley, M. J. (1986). Plant ecology. Oxford: Blackwell Scientific Publications.

Davalos-Sotelo, R. (2005). Determination of elastic properties of clear wood by the homogenization method in two dimensions. Wood Science and Technology, 39, 385–417 doi: 10.1007/s00226-005-0288-2 DOI:

Eder, M., Rüggeberg, M., & Burgert, I. (2009). A close-up view of the mechanical design of arborescent plants at different levels of hierarchy - requirements and structural solutions. New Zealand Journal of Forestry Science, 39, 115-124.

Ennos, A. R. (2005). Compliance in plants. In C. H. M. Jenkins (Ed.), Compliant structures in nature and engineering (p. 21). Wessex: WIT. Recuperado de DOI:

Ennos, R. (2016). Trees: A complete guide to their biology and structure. Ithaca: Cornell University Press.

Ennos, A. R. (1997). Wind as an ecological factor. Trends in Ecology & Evolution, 12(3), 108-111. doi: 10.1016/S0169-5347(96)10066-5 DOI:

Fagerstedt, K. V. (1996). Wind and trees. edited by M. P. Coutts and J. Grace. Cambridge: Cambridge University Press. 1995. 485 pp. ISBN 0 521 46037 9. Edinburgh Journal of Botany, 53(2), 282-283. doi: 10.1017/S096042860000295X DOI:

Fratzl, P. (2003). Cellulose and collagen: From fibres to tissues. Current Opinion in Colloid & Interface Science, 8(1), 32-39. doi: 10.1016/S1359-0294(03)00011-6 DOI:

Fratzl, P. (2005). Hierarchical structure and mechanical adaptation of biological materials. In R. L. Reis & S. Weiner (Eds.), Learning from nature how to design new implantable biomaterialsis: From biomineralization fundamentals to biomimetic materials and processing routes: Proceedings of the NATO advanced study institute, held in alvor, algarve, portugal, 13 - 24 October 2003 (pp. 15-34). Dordrecht: Springer Netherlands. doi: 10.1007/1-4020-2648-X_2 DOI:

Fratzl, P. & Weinkamer, R. (2007). Nature’s hierarchical materials. Progress in Materials Science, 52(8), 1263-1334. doi: 10.1016/j.pmatsci.2007.06.001 DOI:

Götmark, F., Götmark, E., & Jensen, A. M. (2016). Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Frontiers in Plant Science, 7, 1095. Recuperado de DOI:

Galilei, G. (1638). Two new sciences (H. Crew, A. de Salvio Trans.). Leida: Elzevir.

Gibson, L. J. (2005). Biomechanics of cellular solids. Journal of Biomechanics, 38(3), 377-399. doi: 10.1016/j.jbiomech.2004.09.027 DOI:

Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface, 9(76), 2749. Recuperado de DOI:

Gibson, L. J. & Ashby, M. F. (1999). Cellular solids: Structure and properties (paperback (with corrections) ed.). Cambridge: Cambridge University Press.

Givnish, T. J. (1988). Adaptation to sun and shade: A whole-plant perspective. Functional Plant Biology, 15(2), 63-92. doi: 10.1071/PP9880063 DOI:

Givnish, T. J. (1995). 1 - Plant stems: Biomechanical adaptation for energy capture and influence on species distributions. En B. L. Gartner (Ed.), Plant stems (pp. 3-49). San Diego: Academic Press. doi: 10.1016/B978-012276460-8/50003-5 DOI:

Goethe, J. W. (1790). La métamorphose des plantes (H. Bideau Trans.) (4a ed.). Paris: Triades. Recuperado de

Gordon, J. E. (1978). Structures or why things don't fall down. London: Penguin Books. DOI:

Gordon, J. E. (2006). The new science of strong materials or why you don't fall through the floor (Expand Princeton Science Library ed.). Princeton: Princeton University Press.

Grace, J. (1988). 3. Plant response to wind. Agriculture, Ecosystems & Environment, 22–23, 71-88. doi: 10.1016/0167-8809(88)90008-4 DOI:

Hallé, F. (2001). Branching in plants. En V. Fleury, J. Gouyet, & M. Léonetti (Eds.), Branching in nature: Dynamics and morphogenesis of branching structures, from cell to river networks (pp. 23-40). Berlin: Springer. doi: 10.1007/978-3-662-06162-6_2 DOI:

Hallé, F. & Oldeman, R. A. A. (1970). Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Paris: Masson.

Hallé, F., Oldeman, R. A. A., & Tomlinson, P. B. (1978). Tropical trees and forests: An architectural analysis. Berlin: Springer. DOI:

Hellström, L., Carlsson, L., Falster, D. S., Westoby, M., & Brännström, Å. (2018). Branch thinning and the large-scale, self-similar structure of trees. The American Naturalist, 192(1), E37-E47. doi: 10.1086/697429 DOI:

Holmberg, S., Persson, K., & Petersson, H. (1999) Nonlinear mechanical behaviour and analysis of wood and fibre materials. Computers and Structures, 72, 459–480. doi:10.1016/S0045-7949(98)00331-9 DOI:

Horn, H. S. (1971). The adaptive geometry of trees. Princeton: Princeton University Press.

Huiskes, R. (2000). If bone is the answer, then what is the question? Journal of Anatomy, 197, 145-156. doi: 10.1046/j.1469-7580.2000.19720145.x DOI:

Jeronimidis, G. (2008). (2008). Bioinspiration for engineering and architecture: Materials—Structures—Function. Paper presented at the Silicon + Skin: Biological Processes and Computation, Minneapolis, Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) 26. Recuperado de DOI:

King, D. A. (1986). Tree form, height growth, and susceptibility to wind damage in acer saccharum. Ecology, 67(4), 980-990. doi: 10.2307/1939821 DOI:

King, D. A. (1990). The adaptive significance of tree height. The American Naturalist, 135(6), 809-828. doi: 10.1086/285075 DOI:

Lakes, R. (1993). Materials with structural hierarchy. Nature, 361(6412), 511-515. doi: 10.1038/361511a0 DOI:

Mattheck, C. (1991). Trees: The mechanical design. Berlin: Springer-Verlag. DOI:

Mattheck, C., Bethge, K., & Schäfer, J. (1993). Safety factors in trees. Journal of Theoretical Biology, 165(2), 185-189. doi: 10.1006/jtbi.1993.1184 DOI:

Mattheck, C. & Kübler, H. (1997). Wood: The internal optimization of trees. Berlin: Springer. DOI:

Mattheck, C. (1995). 3 - Biomechanical optimum in woody stems. En B. L. Gartner (Ed.), Plant stems (pp. 75-90). San Diego: Academic Press. doi: 10.1016/B978-012276460-8/50005-9 DOI:

Mayer, G. & Sarikaya, M. (2002). Rigid biological composite materials: Structural examples for biomimetic design. Experimental Mechanics, 42(4), 395-403. doi: 10.1007/BF02412144 DOI:

McMahon, T. (1975). The mechanical design of trees. Scientific American, 233(1), 92. doi: 10.1038/scientificamerican0775-92 DOI:

McMahon, T. (1973). Size and shape in biology. Science, 179(4079), 1201. Recuperado de DOI:

McMahon, T. A. & Kronauer, R. E. (1976). Tree structures: Deducing the principle of mechanical design. Journal of Theoretical Biology, 59(2), 443-466. doi: 10.1016/0022-5193(76)90182-X DOI:

Niklas, K. J. (1992). Plant biomechanics: An engineering approach to plant form and function. Chicago: University of Chicago Press.

Niklas, K. J. (1994). Interspecific allometries of critical buckling height and actual plant height. American Journal of Botany, 81(10), 1275-1279. doi: 10.2307/2445403 DOI:

Pearcy, R. W., Muraoka, H., & Valladares, F. (2005). Crown architecture in sun and shade environments: Assessing function and trade-offs with a three-dimensional simulation model. New Phytologist, 166(3), 791-800. doi: 10.1111/j.1469-8137.2005.01328.x DOI:

Peyhardi, J., Caraglio, Y., Costes, E., Lauri, P., Trottier, C., & Guédon, Y. (2017). Integrative models for joint analysis of shoot growth and branching patterns. New Phytologist, 216(4), 1291-1304. doi: 10.1111/nph.14742 DOI:

Plomion, C., Leprovost, G., & Stokes, A. (2001). Wood formation in trees. Plant Physiology, 127(4), 1513. Recuperado de DOI:

Raghavendra, A. S. (1991). Physiology of trees. New York: Wiley.

Speck, T., Spatz, H. —. C., & Vogellehner, D. (1990). Contributions to the biomechanics of plants. I. stabilities of plant stems with strengthening elements of different cross-sections against weight and wind forces. Botanica Acta, 103(1), 111-122. doi: 10.1111/j.1438-8677.1990.tb00136.x DOI:

Speck, T. & Burgert, I. (2011). Plant stems: Functional design and mechanics. Annual Review of Materials Research, 41(1), 169-193. doi: 10.1146/annurev-matsci-062910-100425 DOI:

Sun, C. C. (2005). True density of microcrystalline cellulose. Journal of Pharmaceutical Sciences, 94(10), 2132-2134. doi: 10.1002/jps.20459 DOI:

Terborgh, J. (1992). Maintenance of diversity in tropical forests. Biotropica, 24(2), 283-292. doi: 10.2307/2388523 DOI:

Thibaut, B., Gril, J., & Fournier, M. (2001). Mechanics of wood and trees: Some new highlights for an old story. Comptes Rendus De l' Académie Des Sciences Series, 329(9), 701-716. doi: 10.1016/S1620-7742(01)01380-0 DOI:

Thomas, P. A. (2014). Trees: Their natural history (2nd ed.). Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139026567 DOI:

Valladares, F. & Niinemets, Ü. (2007). The architecture of plant crowns. Functional plant ecology, second edition CRC Press. doi: 10.1201/9781420007626.ch4 DOI:

VanderHart, D. L. & Atalla, R.H. (1984). Studies of microstructure in native celluloses using solid‐state 13C NMR. Macromolecules 17, 1465-1472. DOI:

Vargas, G., Trifol, J., Algar, I., Arbelaiz, A., Mondragon, G., Fernandes, S. C. M., . . . , & Eceiza, A. (2015). Nanostructured composite materials reinforced with nature-based nanocellulose. En S. Syngellakis (Ed.), Natural filler and fibre composites: Development and characterisation (pp. 75). Wessex: WIT. Recuperado de DOI:

Vargas-Silva, G. (2017). Estrategias mecánicas de las plantas arborescentes: enseñanzas estructurales de los árboles. Ingeniare. Revista Chilena de Ingeniería, 25(3), 510-523. DOI:

Vincent, J. F. (1999). From cellulose to cell. Journal of Experimental Biology, 202(23), 3263. Recuperado de DOI:

Vogel, S. (1989). Drag and reconfiguration of broad leaves in high winds. Journal of Experimental Botany, 40(8), 941-948. doi: 10.1093/jxb/40.8.941 DOI:

Vogel, S. (2003). Comparative biomechanics: Life's physical world. Princeton: Princeton University Press.

Vogel, S. (2009). Leaves in the lowest and highest winds: Temperature, force and shape. New Phytologist, 183(1), 13-26. doi: 10.1111/j.1469-8137.2009.02854.x DOI:

Wilson, B. F. & Archer, R. R. (1979). Tree design: Some biological solutions to mechanical problems. Bioscience, 29(5), 293-298. doi: 10.2307/1307825 DOI:




Cómo citar

Vargas-Silva, G. (2019). Biomecánica de los árboles: crecimiento, anatomía y morfología. Madera Y Bosques, 25(3).
  • Resumen
  • PDF
  • LENS



Revisiones bibliográficas


Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.