Publicado 2019-12-13
Resumen
El transporte de agua en las plantas vasculares terrestres es pasivo y está determinado por la transpiración o pérdida de agua a través de las hojas. La teoría de la cohesión-tensión es la más aceptada para explicar este proceso, y se complementa con la analogía de la ley de Ohm, que analiza el flujo del agua como un proceso catenario. La resistencia al estrés hídrico y a la cavitación está fuertemente asociada con las características anatómicas del xilema, de las punteaduras intervasculares y de sus membranas, estas últimas se alteran en función de las propiedades químicas de la solución acuosa que fluye a través de ellas. Con base en estas premisas, esta revisión aborda el fenómeno del ascenso del agua en las plantas vasculares terrestres y analiza los conceptos, las teorías y los métodos más usados en el estudio de la arquitectura hidráulica. Además, señala las diferencias en la estructura del xilema y el transporte del agua entre dicotiledóneas y monocotiledóneas.
Citas
- Alder, N. N., Pockman, W. T., Sperry, J. S., & Nuismer, S. (1997). Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany, 48(3), 665–674. doi: 10.1093/jxb/48.3.665
- Altus, D. P., Canny, M. J., & Blackman, D. R. (1985). Water pathways in wheat leaves. II. Water conducting capacities and vessel diameters of different vein types, and behavior of the integrated vein network. Australian Journal of Plant Physiology, 12(2), 183–199. doi: 10.1071/PP9850183
- Ángeles, G. (2013). Plomería vegetal. Ciencia y Desarrollo, Mayo-Junio, 1–2.
- Ángeles, G., Bond, B., Boyer, J. S., Brodribb, T., Brooks, J. R., Burns, M. J., … Tyree, M. (2004). The cohesion-tension theory. New Phytologist, 163(3), 451–452. doi: 10.1111/j.1469-8137.2004.01142.x
- Baas, P. (2004). Evolution of xylem physiology. En A. R. Hemsley & I. Poole (Eds.), The evolution of plant physiology (pp. 273–291). San Diego, California: Elsevier Academic Press.
- Blum, A. (2011). Plant breeding for water-limited environments (1a ed.). Tel Aviv, Israel: Springer Science+Business Media, LLC.
- Buhtz, A., Kolasa, A., Arlt, K., Walz, C., & Kehr, J. (2004). Xylem sap protein composition is conserved among different plant species. Planta, 219(4), 610–618. doi: 10.1007/s00425-004-1259-9
- Canny, M. J. (1995). A new theory for the ascent of sap-cohesion supported by tissue pressure. Annals of Botany, 75(4), 343–357. doi: 10.1006/anbo.1995.1032
- Carlquist, S. (1977). Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64(7), 887–896. doi: 10.1002/j.1537-2197.1977.tb11932.x
- Carlquist, S. (1988). Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood (1a ed.). New York, USA: Springer-Verlag.
- Carlquist, S. (2009). Non-random vessel distribution in woods: patterns, modes, diversity, correlations. Aliso, 27(1), 39–58. doi: 10.5642/aliso.20092701.04
- Cesalpino, A. (1583). De plantis libri XVI. Florence, Italy: Giorgio Marescottu.
- Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. doi: 10.1111/j.1461-0248.2009.01285.x
- Choat, B., Ball, M., Luly, J., & Holtum, J. (2003). Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology, 131(1), 41–48. doi: 10.1104/pp.014100
- Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012). nature11688-s2.
- Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012b). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. doi: 10.1038/nature11688
- Cochard, H. (2002). How to measure xylem embolism with the XYL’EM apparatus. Clermont, France. Retrieved from http://www.bronkhorst.fr/fr/produits/xylem_embolismmeter
- Cochard, H., Cruiziat, P., & Tyree, M. T. (1992). Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure–volume analysis. Plant Physiology, 100(1), 205–209. doi: 10.1104/pp.100.1.205
- Cochard, H., Damour, G., Bodet, C., Tharwat, I., Poirier, M., & Améglio, T. (2005). Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 124(4), 410–418. doi: 10.1111/j.1399-3054.2005.00526.x
- Cochard, H., Herbette, S., Hernández, E., Hölta, T., & Mencuccini, M. (2010). The effects of sap ionic composition on xylem vulnerability to cavitation. Journal of Experimental Botany, 61(1), 275–285. doi: 10.1093/jxb/erp298
- Comstock, J. P. (1999). Why Canny’s theory doesn’t hold water. American Journal of Botany, 86(8), 1077–1081. doi: 10.2307/2656968
- Cowan, I. R. (1972). Electrical analog of evaporation from, and flow of water in plants. Planta, 106(3), 221–226. doi: 10.1007/BF00388099
- Cruiziat, P., Cochard, H., & Améglio, T. (2002). Hydraulic architecture of trees: main concepts and results. Annals of Forest Science, 59(7), 723–752. doi: 10.1051/forest:2002060
- Derbyshire, P., McCann, M. C., & Roberts, K. (2007). Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biology, 7(1), 31. doi: 10.1186/1471-2229-7-31
- Dixon, H. H. (1914). Transpiration and the ascent of sap in plants. London, United Kingdom: Macmillan.
- Dixon, H. H. & Joly, J. (1895). On the ascent of sap. Philosophical Transactions of the Royal Society of London, 186(1895), 563–576. doi: 10.1098/rstb.1895.0012
- Domec, J. C., Lachenbruch, B., Meinzer, F. C., Woodruff, D. R., Warren, J. M., & McCulloh, K. A. (2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12069–12074. doi: 10.1073/pnas.0710418105
- Evert, R. F. (2006). Esau’s Plant anatomy (3a ed.). New Jersey, USA.: John Wiley y Sons, Inc.
- Ewart, A. J. (1908). The ascent of water in trees: (Second paper). Philosophical Transactions of the Royal Society of London, B, Biological Sciences, 199(1908), 341–392. doi: 10.1098/rstb.1908.0008
- Ewers, F. W., Ewers, J. M., Jacobsen, A. L., & López-Portillo, J. A. (2007). Vessel redundancy: modeling safety in numbers. IAWA Journal, 28(4), 373–388. doi: 10.1163/22941932-90001650
- Fahn, A., Werker, E., & Baas, P. (1986). Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Jerusalem, Israel: Israel Academy of Sciences and Humanities.
- Gleason, S. M., Westoby, M., Jansen, S., Choat, B., Hacke, U. G., Pratt, R. B., … Zanne, A. E. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209(1), 123–136. doi: 10.1111/nph.13646
- Grew, N. (1682). The anatomy of plants with an idea of a philosophical history of plants. London, United Kingdom: W. Rawlins.
- Gupta, H. (2017). Essay on leaf (with diagrams). Retrieved November 8, 2017, from http://www.biologydiscussion.com/essay/essay-on-leaf-with-diagrams-botany/20581
- Hacke, U. G., Jacobsen, A. L., & Pratt, R. B. (2009). Xylem function of arid-land shrubs from California, USA: An ecological and evolutionary analysis. Plant, Cell and Environment, 32(10), 1324–1333. doi: 10.1111/j.1365-3040.2009.02000.x
- Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D., & McCulloh, K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461. doi: 10.1007/S004420100628
- Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26(6), 689–701. doi: 10.1093/treephys/26.6.689
- Hafren, J., Daniel, G., & Westermark, U. (2000). The distribution of acidic and esterified pectin in cambium, developing xylem and mature xylem of Pinus sylvestris. IAWA Journal, 21(2), 157–168. doi: 10.1163/22941932-90000242
- Hales, S. (1727). Vegetable staticks (1a ed.). London, United Kingdom: W. and J. Innys and T. Woodward.
- Herbette, S. & Cochard, H. (2010). Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiology, 153(4), 1932–1939. doi: 10.1104/pp.110.155200
- Jansen, S. & Schenk, H. J. (2015). On the ascent of sap in the presence of bubbles. American Journal of Botany, 102(10), 1561–1563. doi: 10.3732/ajb.1500305
- Kavanagh, K. L., & Zaerr, J. B. (1997). Xylem cavitation and loss of hydraulic conductance in western hemlock following planting. Tree Physiology, 17(1), 59–63. doi: 10.1093/treephys/17.1.59
- Kirkham, M. B. (2005). Principles of soil and plant water relations (1a ed.). Kansas, USA: Kansas State University Elsevier Academic Press.
- Kocacinar, F. & Sage, R. F. (2003). Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant, Cell and Environment, 26(12), 2015–2026. doi: 10.1111/j.1365-2478.2003.01119.x
- Laschimke, R., Burger, M., & Vallen, H. (2006). Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. Journal of Plant Physiology, 163(10), 996–1007. doi: 10.1016/j.jplph.2006.05.004
- Lens, F., Endress, M. E., Baas, P., Jansen, S., & Smets, E. (2009). Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. American Journal of Botany, 96(12), 2168–2183. doi: 10.3732/ajb.0900116
- Lens, F., Picon-Cochard, C., Delmas, C. E. L., Signarbieux, C., Buttler, A., Cochard, H., … Delzon, S. (2016). Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm trees. Plant Physiology, 172(2), 661-667. doi: 10.1104/pp.16.00829
- Lens, F., Sperry, J. S., Christman, M. A., Choat, B., Rabaey, D., & Jansen, S. (2010). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190(3), 709–723. doi: 10.1111/j.1469-8137.2010.03518.x
- Li, S., Feifel, M., Karimi, Z., Schuldt, B., Choat, B., & Jansen, S. (2015). Leaf gas exchange performance and the lethal water potential of five European species during drought. Tree Physiology, 36(2), 179–192. doi: 10.1093/treephys/tpv117
- Li, Y., Sperry, J. S., Taneda, H., Bush, S. E., & Hacke, U. G. (2008). Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytologist, 177(2), 558–568. doi: 10.1111/j.1469-8137.2007.02272.x
- López-Portillo, J., Ewers, F. W., Ángeles, G., & Fisher, J. B. (2000). Hydraulic architecture of Monstera acuminata: evolutionary consequences of the hemiepiphytic growth form. New Phytologist, 145(2), 289–299. doi: 10.1046/j.1469-8137.2000.00578.x
- Maherali, H. M., Pockman, W. T., & Jackson, R. B. (2004). Adaptative variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85(8), 2184–2199. doi: 10.1890/02-0538
- Martínez-Vilalta, J. & Piñol, J. (2003). Limitaciones hidráulicas al aporte de agua a las hojas y resistencia a la sequía. Ecosistemas, 12(1), 1-7.
- Martre, P., Morillon, R., Barrieu, F., North, G. B., & Nobel, P. S. (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiology, 130(4), 2101–2110. doi: 10.1104/pp.009019
- Melcher, P. J., Holbrook, N. M., Burns, M. J., Zwieniecki, M. A., Cobb, A. R., Brodribb, T. J., … Sack, L. (2012). Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods in Ecology and Evolution, 3(4), 685–694. doi: 10.1111/j.2041-210X.2012.00204.x
- Nardini, A., Dimasi, F., Klepsch, M., & Jansen, S. (2012). Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. Tree Physiology, 32(12), 1434–1441. doi: 10.1093/treephys/tps107
- Neufeld, H. S., Grantz, D. A., Meinzer, F. C., Goldstein, G., Crisosto, G. M., & Crisosto, C. (1992). Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiology, 100(2), 1020–1028. doi: 10.1104/pp.100.2.1020
- Niklas, K. J. (1992). Plant biomechanics, an engineering approach to plant form and function (1a ed.). Chicago, USA: The University of Chicago Press.
- Nobel, P. S. (2009). Physicochemical and environmental plant physiology (4a ed.). Oxford, United Kingdom: Academic Press Inc.
- Pammenter, N. W. & Van der-Willigen, C. (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 18(8-9), 589–593. doi: 10.1093/treephys/18.8-9.589
- Patino, S., Tyree, M. T., & Herre, A. E. (1995). Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphytic Ficus species from Panama. New Phytologist, 129(1), 125–134. doi: 10.1111/j.1469-8137.1995.tb03016.x
- Pelloux, J., Rusterucci, C., & Mellerowicz, E. J. (2007). New insights into pectin methylesterase structure and function. Trends in Plant Science, 12(6), 267–277. doi: 10.1016/j.tplants.2007.04.001
- Pockman, W. T., Sperry, J. S., & O’Leary, J. W. (1995). Sustained and significant negative water pressure in xylem. Nature, 378(6558), 715–716. doi: 10.1038/378715a0
- Rawlings, J. O., & Cure, W. W. (1985). The Weibull function as a dose-response model to describe ozone effects on crop yields. Crop Science, 25(5), 807–814. doi:10.2135/cropsci1985.0011183X002500050020x
- Renner, O. (1925). Zum Nachweis negativer drucke im gefa “sswasser bewurzelter holzgewa” chse. Flora, 119(1), 402–408.
- Sack, L., Cowan, P. D., & Holbrook, N. M. (2003). The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). American Journal of Botany, 90(1), 32–39. doi: 10.3732/ajb.90.1.32.
- Sack, L. & Frole, K. (2006). Leaf structural diversity is related to hydraulic capacity in tropical rainforest. Ecology, 87(2), 483–491. doi: 10.1890/05-0710
- Sack, L. & Holbrook, N. M. (2006). Leaf hydraulics. Annual Review of Plant Biology, 57(1), 361–381. doi: 10.1146/annurev.arplant.56.032604.144141
- Salazar, A. & Gamboa, A. (2013). Importancia de las pectinas en la dinámica de la pared celular durante el desarrollo vegetal. REB. Revista de Educación Bioquímica, 32(2), 67–75.
- Salisbury, F. B., & Ross, C. W. (1992). Plant physiology. (4a ed.). California, USA: Wadsworth
- Salleo, S., Hinckley, T. M., Kikuta, S. B., Lo Gullo, M. A., Weilgony, P., Yoon, T. M., & Richter, H. (1992). A method for inducing xylem emboli in situ: Experiments with a field-grown tree. Plant, Cell and Environment, 15(4), 491–497. doi: 10.1111/j.1365-3040.1992.tb01001.x
- Sane, S. P. & Singh, A. K. (2011). Water movement in vascular plants: a primer. Journal of the Indian Institute of Science, 91(3), 233–242.
- Schenk, H. J., Espino, S., Romo, D. M., Nima, N., Do, A. Y. T., Michaud, J. M., … Jansen, S. (2017). Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiology, 173(2), 1177–1196. doi: 10.1104/pp.16.01039
- Schenk, H. J., Steppe, K., & Jansen, S. (2015). Nanobubbles: a new paradigm for air-seeding in xylem. Trends in Plant Science, 20(4), 199–205. doi: 10.1016/j.tplants.2015.01.008
- Scholander P. F., Hammel H. T., Bradstreet E. D., A., & Hemmingsen, E. A. (1965). Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants. Advancement of Science, 148(3668), 339–346. doi: 10.1126/science.148.3668.339
- Scoffoni, C., Rawls, M., McKown, A., Cochard, H., & Sack, L. (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156(2), 832–843. doi: 10.1104/pp.111.173856
- Shane, M. W., McCully, M. E., & Canny, M. J. (2000). Architecture of branch-root junctions in maize: structure of the connecting xylem and the porosity of the pit membranes. Annals of Botany, 85(5), 613–624 doi: 10.1006/anbo.2000.1113
- Slatyer, K. O. & Taylor, S. A. (1960). Terminology in plant and soil water relations. Nature, 187, 922–924.
- Sperry, J. S. (1986). Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiology, 80(1), 110–116. doi: 10.1104/pp.80.1.110
- Sperry, J. S., Donnelly, J. R., & Tyree, M. T. (1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment, 11(1), 35–40. doi: 10.1111/j.1365-3040.1988.tb01774.x
- Sperry, J. S. & Saliendra, N. Z. (1994). Intra-and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell and Environment, 17(11), 1233–1241. doi: 10.1111/j.1365-3040.1994.tb02021.x
- Sperry, J. S., Saliendra, N. Z., Pockman, W. T., Cochard, H., Cruiziat, P., Davis, S. D., … Tyree, M. T. (1996). New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant, Cell and Environment, 19(4), 427–436. doi: 10.1111/j.1365-3040.1996.tb00334.x
- Stiller, V. & Sperry, J. S. (1999). Canny’s compensating pressure theory fails a test. American Journal of Botany, 86(8), 1082–1086. doi: 10.2307/2656969
- Stiller, V. & Sperry, J. S. (2002). Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.). Journal of Experimental Botany, 53(371), 1155–1161. doi: 10.1093/jexbot/53.371.1155
- Streeter, L., Wylie, E., & Bedford, K. (2000). Mecánica de fluídos (9a ed.). Santafé de Bogotá, Colombia: Mc. Graw Hill.
- Taiz, L. & Zeiger, E. (2012). Plant Physiology (5a ed.). Sunderland (Massachusetts), USA: Sinauer Associates.
- Trakal, L., Martínez-Fernández, D., Vitková, M., & Komárek, M. (2015). Phytoextraction of metals: modeling root metal uptake and associated processes. En A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation (pp.69-83) (1a ed.). New York, USA: Springer. doi: 10.1007/978-3-319-10969-5
- Trifilò, P., Nardini, A., Raimondo, F., Lo Gullo, M. A., & Salleo, S. (2011). Ion mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis L. Functional Plant Biology, 38(7), 606–613. doi: 10.1071/FP10233
- Tyree, M. T. & Ewers, F. W. (1991). Tansley Review No. 34. The hydraulic architecture of trees and other woody plants. New Phytologist, 119(34), 345–360. doi: 10.1111/j.1469-8137.1991.tb00035.x
- Tyree, M. T., Nardini, A., & Salleo, S. (2000). Hydraulic architecture of whole plants and single leaves. In M. Labrecque (Ed.), L’arbre 2000 the Tree (pp. 215–221). Montreal, Canada: Isabelle Quentin Publisher.
- Tyree, M. T. & Sperry, J. S. (1989). Vulnerability of xilem to cavitation and embolism. Annual Review of Plant Physiology, 40(1), 19–38. doi: 10.1146/annurev.pp.40.060189.000315
- Tyree, M. T. & Yianoulis, P. (1980). The site of water evaporation from sub-stomatal cavities, liquid path resistances and hydroactive stomatal closure. Annals of Botany, 46(2), 175–193. doi: 10.1093/oxfordjournals.aob.a085906
- Tyree, M. T., & Zimmermann, M. H. (2002). Xylem structure and the ascent of sap. (2a ed.). Berlin, Germany: Springer-Verlag Berlin Heidelberg.
- Van den Honert, T. H. (1948). Water transport in plants as a catenary process. Discussions of the Faraday Society, 3, 146–153. doi: 10.1039/DF9480300146
- Van Doorn, W. G., Hiemstra, T., & Fanurakis, D. (2011). Hydrogel regulation of xylem water flow: an alternative hypothesis. Plant Physiology, 157(4), 1642–1649. doi: 10.1104/pp.111.185314
- Wheeler, J. K., Huggett, B. A., Tofte, A, N., Rockwell, F. E., & Holbrook, N. M. (2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell and Environment, 36(11), 1938–1949. doi: 10.1111/pce.12139
- Willats, W. G., McCartney, L., Mackie, W., & Knox, J. P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 47(1-2), 9–27. doi: 10.1023/A:1010662911148
- Zimmermann, M. H. (1983). Xylem structure and the ascent of sap. (1a ed.). Berlin, Germany: Springer-Verlag.
- Zimmermann, U., Schneider, H., Wegner, L. H., & Haase, A. (2004). Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytologist, 162(3), 575–615. doi: 10.1111/j.1469-8137.2004.01083.x
- Zwieniecki, M. A., Melcher, P. J., & Holbrook, N. M. (2001). Hydrogel control of xylem hydraulic resistance in plants. Science, 291(5506), 1059–1062. doi: 10.1126/science.1057175