Vol. 25 Núm. 3 (2019): Otoño 2019
Revisiones bibliográficas

La arquitectura hidráulica de las plantas vasculares terrestres, una revisión

Gilberto Alemán-Sancheschúlz
Universidad Nacional Autónoma de México
Biografía
Eloy Solano
Universidad Nacional Autónoma de México
Biografía
Teresa Terrazas
Universidad Nacional Autónoma de México
Biografía
Jorge López-Portillo
Instituto de Ecología, A. C.
Biografía

Publicado 2019-12-13

Palabras clave

  • cavitation,
  • cohesion-tension,
  • water stress,
  • water potential,
  • water transport in plants,
  • xylem
  • ...Más
    Menos
  • cavitación,
  • cohesión-tensión,
  • estrés hídrico,
  • potencial hídrico,
  • transporte de agua en las plantas,
  • xilema
  • ...Más
    Menos

Resumen

El transporte de agua en las plantas vasculares terrestres es pasivo y está determinado por la transpiración o pérdida de agua a través de las hojas. La teoría de la cohesión-tensión es la más aceptada para explicar este proceso, y se complementa con la analogía de la ley de Ohm, que analiza el flujo del agua como un proceso catenario. La resistencia al estrés hídrico y a la cavitación está fuertemente asociada con las características anatómicas del xilema, de las punteaduras intervasculares y de sus membranas, estas últimas se alteran en función de las propiedades químicas de la solución acuosa que fluye a través de ellas. Con base en estas premisas, esta revisión aborda el fenómeno del ascenso del agua en las plantas vasculares terrestres y analiza los conceptos, las teorías y los métodos más usados en el estudio de la arquitectura hidráulica. Además, señala las diferencias en la estructura del xilema y el transporte del agua entre dicotiledóneas y monocotiledóneas.

Citas

  1. Alder, N. N., Pockman, W. T., Sperry, J. S., & Nuismer, S. (1997). Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany, 48(3), 665–674. doi: 10.1093/jxb/48.3.665
  2. Altus, D. P., Canny, M. J., & Blackman, D. R. (1985). Water pathways in wheat leaves. II. Water conducting capacities and vessel diameters of different vein types, and behavior of the integrated vein network. Australian Journal of Plant Physiology, 12(2), 183–199. doi: 10.1071/PP9850183
  3. Ángeles, G. (2013). Plomería vegetal. Ciencia y Desarrollo, Mayo-Junio, 1–2.
  4. Ángeles, G., Bond, B., Boyer, J. S., Brodribb, T., Brooks, J. R., Burns, M. J., … Tyree, M. (2004). The cohesion-tension theory. New Phytologist, 163(3), 451–452. doi: 10.1111/j.1469-8137.2004.01142.x
  5. Baas, P. (2004). Evolution of xylem physiology. En A. R. Hemsley & I. Poole (Eds.), The evolution of plant physiology (pp. 273–291). San Diego, California: Elsevier Academic Press.
  6. Blum, A. (2011). Plant breeding for water-limited environments (1a ed.). Tel Aviv, Israel: Springer Science+Business Media, LLC.
  7. Buhtz, A., Kolasa, A., Arlt, K., Walz, C., & Kehr, J. (2004). Xylem sap protein composition is conserved among different plant species. Planta, 219(4), 610–618. doi: 10.1007/s00425-004-1259-9
  8. Canny, M. J. (1995). A new theory for the ascent of sap-cohesion supported by tissue pressure. Annals of Botany, 75(4), 343–357. doi: 10.1006/anbo.1995.1032
  9. Carlquist, S. (1977). Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64(7), 887–896. doi: 10.1002/j.1537-2197.1977.tb11932.x
  10. Carlquist, S. (1988). Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood (1a ed.). New York, USA: Springer-Verlag.
  11. Carlquist, S. (2009). Non-random vessel distribution in woods: patterns, modes, diversity, correlations. Aliso, 27(1), 39–58. doi: 10.5642/aliso.20092701.04
  12. Cesalpino, A. (1583). De plantis libri XVI. Florence, Italy: Giorgio Marescottu.
  13. Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. doi: 10.1111/j.1461-0248.2009.01285.x
  14. Choat, B., Ball, M., Luly, J., & Holtum, J. (2003). Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology, 131(1), 41–48. doi: 10.1104/pp.014100
  15. Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012). nature11688-s2.
  16. Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012b). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. doi: 10.1038/nature11688
  17. Cochard, H. (2002). How to measure xylem embolism with the XYL’EM apparatus. Clermont, France. Retrieved from http://www.bronkhorst.fr/fr/produits/xylem_embolismmeter
  18. Cochard, H., Cruiziat, P., & Tyree, M. T. (1992). Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure–volume analysis. Plant Physiology, 100(1), 205–209. doi: 10.1104/pp.100.1.205
  19. Cochard, H., Damour, G., Bodet, C., Tharwat, I., Poirier, M., & Améglio, T. (2005). Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 124(4), 410–418. doi: 10.1111/j.1399-3054.2005.00526.x
  20. Cochard, H., Herbette, S., Hernández, E., Hölta, T., & Mencuccini, M. (2010). The effects of sap ionic composition on xylem vulnerability to cavitation. Journal of Experimental Botany, 61(1), 275–285. doi: 10.1093/jxb/erp298
  21. Comstock, J. P. (1999). Why Canny’s theory doesn’t hold water. American Journal of Botany, 86(8), 1077–1081. doi: 10.2307/2656968
  22. Cowan, I. R. (1972). Electrical analog of evaporation from, and flow of water in plants. Planta, 106(3), 221–226. doi: 10.1007/BF00388099
  23. Cruiziat, P., Cochard, H., & Améglio, T. (2002). Hydraulic architecture of trees: main concepts and results. Annals of Forest Science, 59(7), 723–752. doi: 10.1051/forest:2002060
  24. Derbyshire, P., McCann, M. C., & Roberts, K. (2007). Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biology, 7(1), 31. doi: 10.1186/1471-2229-7-31
  25. Dixon, H. H. (1914). Transpiration and the ascent of sap in plants. London, United Kingdom: Macmillan.
  26. Dixon, H. H. & Joly, J. (1895). On the ascent of sap. Philosophical Transactions of the Royal Society of London, 186(1895), 563–576. doi: 10.1098/rstb.1895.0012
  27. Domec, J. C., Lachenbruch, B., Meinzer, F. C., Woodruff, D. R., Warren, J. M., & McCulloh, K. A. (2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12069–12074. doi: 10.1073/pnas.0710418105
  28. Evert, R. F. (2006). Esau’s Plant anatomy (3a ed.). New Jersey, USA.: John Wiley y Sons, Inc.
  29. Ewart, A. J. (1908). The ascent of water in trees: (Second paper). Philosophical Transactions of the Royal Society of London, B, Biological Sciences, 199(1908), 341–392. doi: 10.1098/rstb.1908.0008
  30. Ewers, F. W., Ewers, J. M., Jacobsen, A. L., & López-Portillo, J. A. (2007). Vessel redundancy: modeling safety in numbers. IAWA Journal, 28(4), 373–388. doi: 10.1163/22941932-90001650
  31. Fahn, A., Werker, E., & Baas, P. (1986). Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Jerusalem, Israel: Israel Academy of Sciences and Humanities.
  32. Gleason, S. M., Westoby, M., Jansen, S., Choat, B., Hacke, U. G., Pratt, R. B., … Zanne, A. E. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209(1), 123–136. doi: 10.1111/nph.13646
  33. Grew, N. (1682). The anatomy of plants with an idea of a philosophical history of plants. London, United Kingdom: W. Rawlins.
  34. Gupta, H. (2017). Essay on leaf (with diagrams). Retrieved November 8, 2017, from http://www.biologydiscussion.com/essay/essay-on-leaf-with-diagrams-botany/20581
  35. Hacke, U. G., Jacobsen, A. L., & Pratt, R. B. (2009). Xylem function of arid-land shrubs from California, USA: An ecological and evolutionary analysis. Plant, Cell and Environment, 32(10), 1324–1333. doi: 10.1111/j.1365-3040.2009.02000.x
  36. Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D., & McCulloh, K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461. doi: 10.1007/S004420100628
  37. Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26(6), 689–701. doi: 10.1093/treephys/26.6.689
  38. Hafren, J., Daniel, G., & Westermark, U. (2000). The distribution of acidic and esterified pectin in cambium, developing xylem and mature xylem of Pinus sylvestris. IAWA Journal, 21(2), 157–168. doi: 10.1163/22941932-90000242
  39. Hales, S. (1727). Vegetable staticks (1a ed.). London, United Kingdom: W. and J. Innys and T. Woodward.
  40. Herbette, S. & Cochard, H. (2010). Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiology, 153(4), 1932–1939. doi: 10.1104/pp.110.155200
  41. Jansen, S. & Schenk, H. J. (2015). On the ascent of sap in the presence of bubbles. American Journal of Botany, 102(10), 1561–1563. doi: 10.3732/ajb.1500305
  42. Kavanagh, K. L., & Zaerr, J. B. (1997). Xylem cavitation and loss of hydraulic conductance in western hemlock following planting. Tree Physiology, 17(1), 59–63. doi: 10.1093/treephys/17.1.59
  43. Kirkham, M. B. (2005). Principles of soil and plant water relations (1a ed.). Kansas, USA: Kansas State University Elsevier Academic Press.
  44. Kocacinar, F. & Sage, R. F. (2003). Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant, Cell and Environment, 26(12), 2015–2026. doi: 10.1111/j.1365-2478.2003.01119.x
  45. Laschimke, R., Burger, M., & Vallen, H. (2006). Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. Journal of Plant Physiology, 163(10), 996–1007. doi: 10.1016/j.jplph.2006.05.004
  46. Lens, F., Endress, M. E., Baas, P., Jansen, S., & Smets, E. (2009). Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. American Journal of Botany, 96(12), 2168–2183. doi: 10.3732/ajb.0900116
  47. Lens, F., Picon-Cochard, C., Delmas, C. E. L., Signarbieux, C., Buttler, A., Cochard, H., … Delzon, S. (2016). Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm trees. Plant Physiology, 172(2), 661-667. doi: 10.1104/pp.16.00829
  48. Lens, F., Sperry, J. S., Christman, M. A., Choat, B., Rabaey, D., & Jansen, S. (2010). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190(3), 709–723. doi: 10.1111/j.1469-8137.2010.03518.x
  49. Li, S., Feifel, M., Karimi, Z., Schuldt, B., Choat, B., & Jansen, S. (2015). Leaf gas exchange performance and the lethal water potential of five European species during drought. Tree Physiology, 36(2), 179–192. doi: 10.1093/treephys/tpv117
  50. Li, Y., Sperry, J. S., Taneda, H., Bush, S. E., & Hacke, U. G. (2008). Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytologist, 177(2), 558–568. doi: 10.1111/j.1469-8137.2007.02272.x
  51. López-Portillo, J., Ewers, F. W., Ángeles, G., & Fisher, J. B. (2000). Hydraulic architecture of Monstera acuminata: evolutionary consequences of the hemiepiphytic growth form. New Phytologist, 145(2), 289–299. doi: 10.1046/j.1469-8137.2000.00578.x
  52. Maherali, H. M., Pockman, W. T., & Jackson, R. B. (2004). Adaptative variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85(8), 2184–2199. doi: 10.1890/02-0538
  53. Martínez-Vilalta, J. & Piñol, J. (2003). Limitaciones hidráulicas al aporte de agua a las hojas y resistencia a la sequía. Ecosistemas, 12(1), 1-7.
  54. Martre, P., Morillon, R., Barrieu, F., North, G. B., & Nobel, P. S. (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiology, 130(4), 2101–2110. doi: 10.1104/pp.009019
  55. Melcher, P. J., Holbrook, N. M., Burns, M. J., Zwieniecki, M. A., Cobb, A. R., Brodribb, T. J., … Sack, L. (2012). Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods in Ecology and Evolution, 3(4), 685–694. doi: 10.1111/j.2041-210X.2012.00204.x
  56. Nardini, A., Dimasi, F., Klepsch, M., & Jansen, S. (2012). Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. Tree Physiology, 32(12), 1434–1441. doi: 10.1093/treephys/tps107
  57. Neufeld, H. S., Grantz, D. A., Meinzer, F. C., Goldstein, G., Crisosto, G. M., & Crisosto, C. (1992). Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiology, 100(2), 1020–1028. doi: 10.1104/pp.100.2.1020
  58. Niklas, K. J. (1992). Plant biomechanics, an engineering approach to plant form and function (1a ed.). Chicago, USA: The University of Chicago Press.
  59. Nobel, P. S. (2009). Physicochemical and environmental plant physiology (4a ed.). Oxford, United Kingdom: Academic Press Inc.
  60. Pammenter, N. W. & Van der-Willigen, C. (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 18(8-9), 589–593. doi: 10.1093/treephys/18.8-9.589
  61. Patino, S., Tyree, M. T., & Herre, A. E. (1995). Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphytic Ficus species from Panama. New Phytologist, 129(1), 125–134. doi: 10.1111/j.1469-8137.1995.tb03016.x
  62. Pelloux, J., Rusterucci, C., & Mellerowicz, E. J. (2007). New insights into pectin methylesterase structure and function. Trends in Plant Science, 12(6), 267–277. doi: 10.1016/j.tplants.2007.04.001
  63. Pockman, W. T., Sperry, J. S., & O’Leary, J. W. (1995). Sustained and significant negative water pressure in xylem. Nature, 378(6558), 715–716. doi: 10.1038/378715a0
  64. Rawlings, J. O., & Cure, W. W. (1985). The Weibull function as a dose-response model to describe ozone effects on crop yields. Crop Science, 25(5), 807–814. doi:10.2135/cropsci1985.0011183X002500050020x
  65. Renner, O. (1925). Zum Nachweis negativer drucke im gefa “sswasser bewurzelter holzgewa” chse. Flora, 119(1), 402–408.
  66. Sack, L., Cowan, P. D., & Holbrook, N. M. (2003). The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). American Journal of Botany, 90(1), 32–39. doi: 10.3732/ajb.90.1.32.
  67. Sack, L. & Frole, K. (2006). Leaf structural diversity is related to hydraulic capacity in tropical rainforest. Ecology, 87(2), 483–491. doi: 10.1890/05-0710
  68. Sack, L. & Holbrook, N. M. (2006). Leaf hydraulics. Annual Review of Plant Biology, 57(1), 361–381. doi: 10.1146/annurev.arplant.56.032604.144141
  69. Salazar, A. & Gamboa, A. (2013). Importancia de las pectinas en la dinámica de la pared celular durante el desarrollo vegetal. REB. Revista de Educación Bioquímica, 32(2), 67–75.
  70. Salisbury, F. B., & Ross, C. W. (1992). Plant physiology. (4a ed.). California, USA: Wadsworth
  71. Salleo, S., Hinckley, T. M., Kikuta, S. B., Lo Gullo, M. A., Weilgony, P., Yoon, T. M., & Richter, H. (1992). A method for inducing xylem emboli in situ: Experiments with a field-grown tree. Plant, Cell and Environment, 15(4), 491–497. doi: 10.1111/j.1365-3040.1992.tb01001.x
  72. Sane, S. P. & Singh, A. K. (2011). Water movement in vascular plants: a primer. Journal of the Indian Institute of Science, 91(3), 233–242.
  73. Schenk, H. J., Espino, S., Romo, D. M., Nima, N., Do, A. Y. T., Michaud, J. M., … Jansen, S. (2017). Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiology, 173(2), 1177–1196. doi: 10.1104/pp.16.01039
  74. Schenk, H. J., Steppe, K., & Jansen, S. (2015). Nanobubbles: a new paradigm for air-seeding in xylem. Trends in Plant Science, 20(4), 199–205. doi: 10.1016/j.tplants.2015.01.008
  75. Scholander P. F., Hammel H. T., Bradstreet E. D., A., & Hemmingsen, E. A. (1965). Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants. Advancement of Science, 148(3668), 339–346. doi: 10.1126/science.148.3668.339
  76. Scoffoni, C., Rawls, M., McKown, A., Cochard, H., & Sack, L. (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156(2), 832–843. doi: 10.1104/pp.111.173856
  77. Shane, M. W., McCully, M. E., & Canny, M. J. (2000). Architecture of branch-root junctions in maize: structure of the connecting xylem and the porosity of the pit membranes. Annals of Botany, 85(5), 613–624 doi: 10.1006/anbo.2000.1113
  78. Slatyer, K. O. & Taylor, S. A. (1960). Terminology in plant and soil water relations. Nature, 187, 922–924.
  79. Sperry, J. S. (1986). Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiology, 80(1), 110–116. doi: 10.1104/pp.80.1.110
  80. Sperry, J. S., Donnelly, J. R., & Tyree, M. T. (1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment, 11(1), 35–40. doi: 10.1111/j.1365-3040.1988.tb01774.x
  81. Sperry, J. S. & Saliendra, N. Z. (1994). Intra-and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell and Environment, 17(11), 1233–1241. doi: 10.1111/j.1365-3040.1994.tb02021.x
  82. Sperry, J. S., Saliendra, N. Z., Pockman, W. T., Cochard, H., Cruiziat, P., Davis, S. D., … Tyree, M. T. (1996). New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant, Cell and Environment, 19(4), 427–436. doi: 10.1111/j.1365-3040.1996.tb00334.x
  83. Stiller, V. & Sperry, J. S. (1999). Canny’s compensating pressure theory fails a test. American Journal of Botany, 86(8), 1082–1086. doi: 10.2307/2656969
  84. Stiller, V. & Sperry, J. S. (2002). Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.). Journal of Experimental Botany, 53(371), 1155–1161. doi: 10.1093/jexbot/53.371.1155
  85. Streeter, L., Wylie, E., & Bedford, K. (2000). Mecánica de fluídos (9a ed.). Santafé de Bogotá, Colombia: Mc. Graw Hill.
  86. Taiz, L. & Zeiger, E. (2012). Plant Physiology (5a ed.). Sunderland (Massachusetts), USA: Sinauer Associates.
  87. Trakal, L., Martínez-Fernández, D., Vitková, M., & Komárek, M. (2015). Phytoextraction of metals: modeling root metal uptake and associated processes. En A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation (pp.69-83) (1a ed.). New York, USA: Springer. doi: 10.1007/978-3-319-10969-5
  88. Trifilò, P., Nardini, A., Raimondo, F., Lo Gullo, M. A., & Salleo, S. (2011). Ion mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis L. Functional Plant Biology, 38(7), 606–613. doi: 10.1071/FP10233
  89. Tyree, M. T. & Ewers, F. W. (1991). Tansley Review No. 34. The hydraulic architecture of trees and other woody plants. New Phytologist, 119(34), 345–360. doi: 10.1111/j.1469-8137.1991.tb00035.x
  90. Tyree, M. T., Nardini, A., & Salleo, S. (2000). Hydraulic architecture of whole plants and single leaves. In M. Labrecque (Ed.), L’arbre 2000 the Tree (pp. 215–221). Montreal, Canada: Isabelle Quentin Publisher.
  91. Tyree, M. T. & Sperry, J. S. (1989). Vulnerability of xilem to cavitation and embolism. Annual Review of Plant Physiology, 40(1), 19–38. doi: 10.1146/annurev.pp.40.060189.000315
  92. Tyree, M. T. & Yianoulis, P. (1980). The site of water evaporation from sub-stomatal cavities, liquid path resistances and hydroactive stomatal closure. Annals of Botany, 46(2), 175–193. doi: 10.1093/oxfordjournals.aob.a085906
  93. Tyree, M. T., & Zimmermann, M. H. (2002). Xylem structure and the ascent of sap. (2a ed.). Berlin, Germany: Springer-Verlag Berlin Heidelberg.
  94. Van den Honert, T. H. (1948). Water transport in plants as a catenary process. Discussions of the Faraday Society, 3, 146–153. doi: 10.1039/DF9480300146
  95. Van Doorn, W. G., Hiemstra, T., & Fanurakis, D. (2011). Hydrogel regulation of xylem water flow: an alternative hypothesis. Plant Physiology, 157(4), 1642–1649. doi: 10.1104/pp.111.185314
  96. Wheeler, J. K., Huggett, B. A., Tofte, A, N., Rockwell, F. E., & Holbrook, N. M. (2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell and Environment, 36(11), 1938–1949. doi: 10.1111/pce.12139
  97. Willats, W. G., McCartney, L., Mackie, W., & Knox, J. P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 47(1-2), 9–27. doi: 10.1023/A:1010662911148
  98. Zimmermann, M. H. (1983). Xylem structure and the ascent of sap. (1a ed.). Berlin, Germany: Springer-Verlag.
  99. Zimmermann, U., Schneider, H., Wegner, L. H., & Haase, A. (2004). Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytologist, 162(3), 575–615. doi: 10.1111/j.1469-8137.2004.01083.x
  100. Zwieniecki, M. A., Melcher, P. J., & Holbrook, N. M. (2001). Hydrogel control of xylem hydraulic resistance in plants. Science, 291(5506), 1059–1062. doi: 10.1126/science.1057175