La arquitectura hidráulica de las plantas vasculares terrestres, una revisión
DOI:
https://doi.org/10.21829/myb.2019.2531828Palabras clave:
cavitación, cohesión-tensión, estrés hídrico, potencial hídrico, transporte de agua en las plantas, xilemaResumen
El transporte de agua en las plantas vasculares terrestres es pasivo y está determinado por la transpiración o pérdida de agua a través de las hojas. La teoría de la cohesión-tensión es la más aceptada para explicar este proceso, y se complementa con la analogía de la ley de Ohm, que analiza el flujo del agua como un proceso catenario. La resistencia al estrés hídrico y a la cavitación está fuertemente asociada con las características anatómicas del xilema, de las punteaduras intervasculares y de sus membranas, estas últimas se alteran en función de las propiedades químicas de la solución acuosa que fluye a través de ellas. Con base en estas premisas, esta revisión aborda el fenómeno del ascenso del agua en las plantas vasculares terrestres y analiza los conceptos, las teorías y los métodos más usados en el estudio de la arquitectura hidráulica. Además, señala las diferencias en la estructura del xilema y el transporte del agua entre dicotiledóneas y monocotiledóneas.
Descargas
Citas
Alder, N. N., Pockman, W. T., Sperry, J. S., & Nuismer, S. (1997). Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany, 48(3), 665–674. doi: 10.1093/jxb/48.3.665 DOI: https://doi.org/10.1093/jxb/48.3.665
Altus, D. P., Canny, M. J., & Blackman, D. R. (1985). Water pathways in wheat leaves. II. Water conducting capacities and vessel diameters of different vein types, and behavior of the integrated vein network. Australian Journal of Plant Physiology, 12(2), 183–199. doi: 10.1071/PP9850183 DOI: https://doi.org/10.1071/PP9850183
Ángeles, G. (2013). Plomería vegetal. Ciencia y Desarrollo, Mayo-Junio, 1–2.
Ángeles, G., Bond, B., Boyer, J. S., Brodribb, T., Brooks, J. R., Burns, M. J., … Tyree, M. (2004). The cohesion-tension theory. New Phytologist, 163(3), 451–452. doi: 10.1111/j.1469-8137.2004.01142.x DOI: https://doi.org/10.1111/j.1469-8137.2004.01142.x
Baas, P. (2004). Evolution of xylem physiology. En A. R. Hemsley & I. Poole (Eds.), The evolution of plant physiology (pp. 273–291). San Diego, California: Elsevier Academic Press. DOI: https://doi.org/10.1016/B978-012339552-8/50016-0
Blum, A. (2011). Plant breeding for water-limited environments (1a ed.). Tel Aviv, Israel: Springer Science+Business Media, LLC. DOI: https://doi.org/10.1007/978-1-4419-7491-4
Buhtz, A., Kolasa, A., Arlt, K., Walz, C., & Kehr, J. (2004). Xylem sap protein composition is conserved among different plant species. Planta, 219(4), 610–618. doi: 10.1007/s00425-004-1259-9 DOI: https://doi.org/10.1007/s00425-004-1259-9
Canny, M. J. (1995). A new theory for the ascent of sap-cohesion supported by tissue pressure. Annals of Botany, 75(4), 343–357. doi: 10.1006/anbo.1995.1032 DOI: https://doi.org/10.1006/anbo.1995.1032
Carlquist, S. (1977). Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64(7), 887–896. doi: 10.1002/j.1537-2197.1977.tb11932.x DOI: https://doi.org/10.1002/j.1537-2197.1977.tb11932.x
Carlquist, S. (1988). Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood (1a ed.). New York, USA: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-662-21714-6_1
Carlquist, S. (2009). Non-random vessel distribution in woods: patterns, modes, diversity, correlations. Aliso, 27(1), 39–58. doi: 10.5642/aliso.20092701.04 DOI: https://doi.org/10.5642/aliso.20092701.04
Cesalpino, A. (1583). De plantis libri XVI. Florence, Italy: Giorgio Marescottu. DOI: https://doi.org/10.5962/bhl.title.60929
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. doi: 10.1111/j.1461-0248.2009.01285.x DOI: https://doi.org/10.1111/j.1461-0248.2009.01285.x
Choat, B., Ball, M., Luly, J., & Holtum, J. (2003). Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology, 131(1), 41–48. doi: 10.1104/pp.014100 DOI: https://doi.org/10.1104/pp.014100
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012). nature11688-s2.
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012b). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. doi: 10.1038/nature11688 DOI: https://doi.org/10.1038/nature11688
Cochard, H. (2002). How to measure xylem embolism with the XYL’EM apparatus. Clermont, France. Retrieved from http://www.bronkhorst.fr/fr/produits/xylem_embolismmeter
Cochard, H., Cruiziat, P., & Tyree, M. T. (1992). Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure–volume analysis. Plant Physiology, 100(1), 205–209. doi: 10.1104/pp.100.1.205 DOI: https://doi.org/10.1104/pp.100.1.205
Cochard, H., Damour, G., Bodet, C., Tharwat, I., Poirier, M., & Améglio, T. (2005). Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 124(4), 410–418. doi: 10.1111/j.1399-3054.2005.00526.x DOI: https://doi.org/10.1111/j.1399-3054.2005.00526.x
Cochard, H., Herbette, S., Hernández, E., Hölta, T., & Mencuccini, M. (2010). The effects of sap ionic composition on xylem vulnerability to cavitation. Journal of Experimental Botany, 61(1), 275–285. doi: 10.1093/jxb/erp298 DOI: https://doi.org/10.1093/jxb/erp298
Comstock, J. P. (1999). Why Canny’s theory doesn’t hold water. American Journal of Botany, 86(8), 1077–1081. doi: 10.2307/2656968 DOI: https://doi.org/10.2307/2656968
Cowan, I. R. (1972). Electrical analog of evaporation from, and flow of water in plants. Planta, 106(3), 221–226. doi: 10.1007/BF00388099 DOI: https://doi.org/10.1007/BF00388099
Cruiziat, P., Cochard, H., & Améglio, T. (2002). Hydraulic architecture of trees: main concepts and results. Annals of Forest Science, 59(7), 723–752. doi: 10.1051/forest:2002060 DOI: https://doi.org/10.1051/forest:2002060
Derbyshire, P., McCann, M. C., & Roberts, K. (2007). Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biology, 7(1), 31. doi: 10.1186/1471-2229-7-31 DOI: https://doi.org/10.1186/1471-2229-7-31
Dixon, H. H. (1914). Transpiration and the ascent of sap in plants. London, United Kingdom: Macmillan. DOI: https://doi.org/10.5962/bhl.title.44194
Dixon, H. H. & Joly, J. (1895). On the ascent of sap. Philosophical Transactions of the Royal Society of London, 186(1895), 563–576. doi: 10.1098/rstb.1895.0012 DOI: https://doi.org/10.1098/rstb.1895.0012
Domec, J. C., Lachenbruch, B., Meinzer, F. C., Woodruff, D. R., Warren, J. M., & McCulloh, K. A. (2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12069–12074. doi: 10.1073/pnas.0710418105 DOI: https://doi.org/10.1073/pnas.0710418105
Evert, R. F. (2006). Esau’s Plant anatomy (3a ed.). New Jersey, USA.: John Wiley y Sons, Inc. DOI: https://doi.org/10.1002/0470047380
Ewart, A. J. (1908). The ascent of water in trees: (Second paper). Philosophical Transactions of the Royal Society of London, B, Biological Sciences, 199(1908), 341–392. doi: 10.1098/rstb.1908.0008 DOI: https://doi.org/10.1098/rstb.1908.0008
Ewers, F. W., Ewers, J. M., Jacobsen, A. L., & López-Portillo, J. A. (2007). Vessel redundancy: modeling safety in numbers. IAWA Journal, 28(4), 373–388. doi: 10.1163/22941932-90001650 DOI: https://doi.org/10.1163/22941932-90001650
Fahn, A., Werker, E., & Baas, P. (1986). Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Jerusalem, Israel: Israel Academy of Sciences and Humanities.
Gleason, S. M., Westoby, M., Jansen, S., Choat, B., Hacke, U. G., Pratt, R. B., … Zanne, A. E. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209(1), 123–136. doi: 10.1111/nph.13646 DOI: https://doi.org/10.1111/nph.13646
Grew, N. (1682). The anatomy of plants with an idea of a philosophical history of plants. London, United Kingdom: W. Rawlins.
Gupta, H. (2017). Essay on leaf (with diagrams). Retrieved November 8, 2017, from http://www.biologydiscussion.com/essay/essay-on-leaf-with-diagrams-botany/20581
Hacke, U. G., Jacobsen, A. L., & Pratt, R. B. (2009). Xylem function of arid-land shrubs from California, USA: An ecological and evolutionary analysis. Plant, Cell and Environment, 32(10), 1324–1333. doi: 10.1111/j.1365-3040.2009.02000.x DOI: https://doi.org/10.1111/j.1365-3040.2009.02000.x
Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D., & McCulloh, K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461. doi: 10.1007/S004420100628 DOI: https://doi.org/10.1007/s004420100628
Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26(6), 689–701. doi: 10.1093/treephys/26.6.689 DOI: https://doi.org/10.1093/treephys/26.6.689
Hafren, J., Daniel, G., & Westermark, U. (2000). The distribution of acidic and esterified pectin in cambium, developing xylem and mature xylem of Pinus sylvestris. IAWA Journal, 21(2), 157–168. doi: 10.1163/22941932-90000242 DOI: https://doi.org/10.1163/22941932-90000242
Hales, S. (1727). Vegetable staticks (1a ed.). London, United Kingdom: W. and J. Innys and T. Woodward.
Herbette, S. & Cochard, H. (2010). Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiology, 153(4), 1932–1939. doi: 10.1104/pp.110.155200 DOI: https://doi.org/10.1104/pp.110.155200
Jansen, S. & Schenk, H. J. (2015). On the ascent of sap in the presence of bubbles. American Journal of Botany, 102(10), 1561–1563. doi: 10.3732/ajb.1500305 DOI: https://doi.org/10.3732/ajb.1500305
Kavanagh, K. L., & Zaerr, J. B. (1997). Xylem cavitation and loss of hydraulic conductance in western hemlock following planting. Tree Physiology, 17(1), 59–63. doi: 10.1093/treephys/17.1.59 DOI: https://doi.org/10.1093/treephys/17.1.59
Kirkham, M. B. (2005). Principles of soil and plant water relations (1a ed.). Kansas, USA: Kansas State University Elsevier Academic Press.
Kocacinar, F. & Sage, R. F. (2003). Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant, Cell and Environment, 26(12), 2015–2026. doi: 10.1111/j.1365-2478.2003.01119.x DOI: https://doi.org/10.1111/j.1365-2478.2003.01119.x
Laschimke, R., Burger, M., & Vallen, H. (2006). Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. Journal of Plant Physiology, 163(10), 996–1007. doi: 10.1016/j.jplph.2006.05.004 DOI: https://doi.org/10.1016/j.jplph.2006.05.004
Lens, F., Endress, M. E., Baas, P., Jansen, S., & Smets, E. (2009). Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. American Journal of Botany, 96(12), 2168–2183. doi: 10.3732/ajb.0900116 DOI: https://doi.org/10.3732/ajb.0900116
Lens, F., Picon-Cochard, C., Delmas, C. E. L., Signarbieux, C., Buttler, A., Cochard, H., … Delzon, S. (2016). Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm trees. Plant Physiology, 172(2), 661-667. doi: 10.1104/pp.16.00829 DOI: https://doi.org/10.1104/pp.16.00829
Lens, F., Sperry, J. S., Christman, M. A., Choat, B., Rabaey, D., & Jansen, S. (2010). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190(3), 709–723. doi: 10.1111/j.1469-8137.2010.03518.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03518.x
Li, S., Feifel, M., Karimi, Z., Schuldt, B., Choat, B., & Jansen, S. (2015). Leaf gas exchange performance and the lethal water potential of five European species during drought. Tree Physiology, 36(2), 179–192. doi: 10.1093/treephys/tpv117 DOI: https://doi.org/10.1093/treephys/tpv117
Li, Y., Sperry, J. S., Taneda, H., Bush, S. E., & Hacke, U. G. (2008). Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytologist, 177(2), 558–568. doi: 10.1111/j.1469-8137.2007.02272.x DOI: https://doi.org/10.1111/j.1469-8137.2007.02272.x
López-Portillo, J., Ewers, F. W., Ángeles, G., & Fisher, J. B. (2000). Hydraulic architecture of Monstera acuminata: evolutionary consequences of the hemiepiphytic growth form. New Phytologist, 145(2), 289–299. doi: 10.1046/j.1469-8137.2000.00578.x DOI: https://doi.org/10.1046/j.1469-8137.2000.00578.x
Maherali, H. M., Pockman, W. T., & Jackson, R. B. (2004). Adaptative variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85(8), 2184–2199. doi: 10.1890/02-0538 DOI: https://doi.org/10.1890/02-0538
Martínez-Vilalta, J. & Piñol, J. (2003). Limitaciones hidráulicas al aporte de agua a las hojas y resistencia a la sequía. Ecosistemas, 12(1), 1-7.
Martre, P., Morillon, R., Barrieu, F., North, G. B., & Nobel, P. S. (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiology, 130(4), 2101–2110. doi: 10.1104/pp.009019 DOI: https://doi.org/10.1104/pp.009019
Melcher, P. J., Holbrook, N. M., Burns, M. J., Zwieniecki, M. A., Cobb, A. R., Brodribb, T. J., … Sack, L. (2012). Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods in Ecology and Evolution, 3(4), 685–694. doi: 10.1111/j.2041-210X.2012.00204.x DOI: https://doi.org/10.1111/j.2041-210X.2012.00204.x
Nardini, A., Dimasi, F., Klepsch, M., & Jansen, S. (2012). Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. Tree Physiology, 32(12), 1434–1441. doi: 10.1093/treephys/tps107 DOI: https://doi.org/10.1093/treephys/tps107
Neufeld, H. S., Grantz, D. A., Meinzer, F. C., Goldstein, G., Crisosto, G. M., & Crisosto, C. (1992). Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiology, 100(2), 1020–1028. doi: 10.1104/pp.100.2.1020 DOI: https://doi.org/10.1104/pp.100.2.1020
Niklas, K. J. (1992). Plant biomechanics, an engineering approach to plant form and function (1a ed.). Chicago, USA: The University of Chicago Press.
Nobel, P. S. (2009). Physicochemical and environmental plant physiology (4a ed.). Oxford, United Kingdom: Academic Press Inc.
Pammenter, N. W. & Van der-Willigen, C. (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 18(8-9), 589–593. doi: 10.1093/treephys/18.8-9.589 DOI: https://doi.org/10.1093/treephys/18.8-9.589
Patino, S., Tyree, M. T., & Herre, A. E. (1995). Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphytic Ficus species from Panama. New Phytologist, 129(1), 125–134. doi: 10.1111/j.1469-8137.1995.tb03016.x DOI: https://doi.org/10.1111/j.1469-8137.1995.tb03016.x
Pelloux, J., Rusterucci, C., & Mellerowicz, E. J. (2007). New insights into pectin methylesterase structure and function. Trends in Plant Science, 12(6), 267–277. doi: 10.1016/j.tplants.2007.04.001 DOI: https://doi.org/10.1016/j.tplants.2007.04.001
Pockman, W. T., Sperry, J. S., & O’Leary, J. W. (1995). Sustained and significant negative water pressure in xylem. Nature, 378(6558), 715–716. doi: 10.1038/378715a0 DOI: https://doi.org/10.1038/378715a0
Rawlings, J. O., & Cure, W. W. (1985). The Weibull function as a dose-response model to describe ozone effects on crop yields. Crop Science, 25(5), 807–814. doi:10.2135/cropsci1985.0011183X002500050020x DOI: https://doi.org/10.2135/cropsci1985.0011183X002500050020x
Renner, O. (1925). Zum Nachweis negativer drucke im gefa “sswasser bewurzelter holzgewa” chse. Flora, 119(1), 402–408. DOI: https://doi.org/10.1016/S0367-1615(17)32902-6
Sack, L., Cowan, P. D., & Holbrook, N. M. (2003). The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). American Journal of Botany, 90(1), 32–39. doi: 10.3732/ajb.90.1.32. DOI: https://doi.org/10.3732/ajb.90.1.32
Sack, L. & Frole, K. (2006). Leaf structural diversity is related to hydraulic capacity in tropical rainforest. Ecology, 87(2), 483–491. doi: 10.1890/05-0710 DOI: https://doi.org/10.1890/05-0710
Sack, L. & Holbrook, N. M. (2006). Leaf hydraulics. Annual Review of Plant Biology, 57(1), 361–381. doi: 10.1146/annurev.arplant.56.032604.144141 DOI: https://doi.org/10.1146/annurev.arplant.56.032604.144141
Salazar, A. & Gamboa, A. (2013). Importancia de las pectinas en la dinámica de la pared celular durante el desarrollo vegetal. REB. Revista de Educación Bioquímica, 32(2), 67–75.
Salisbury, F. B., & Ross, C. W. (1992). Plant physiology. (4a ed.). California, USA: Wadsworth
Salleo, S., Hinckley, T. M., Kikuta, S. B., Lo Gullo, M. A., Weilgony, P., Yoon, T. M., & Richter, H. (1992). A method for inducing xylem emboli in situ: Experiments with a field-grown tree. Plant, Cell and Environment, 15(4), 491–497. doi: 10.1111/j.1365-3040.1992.tb01001.x DOI: https://doi.org/10.1111/j.1365-3040.1992.tb01001.x
Sane, S. P. & Singh, A. K. (2011). Water movement in vascular plants: a primer. Journal of the Indian Institute of Science, 91(3), 233–242.
Schenk, H. J., Espino, S., Romo, D. M., Nima, N., Do, A. Y. T., Michaud, J. M., … Jansen, S. (2017). Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiology, 173(2), 1177–1196. doi: 10.1104/pp.16.01039 DOI: https://doi.org/10.1104/pp.16.01039
Schenk, H. J., Steppe, K., & Jansen, S. (2015). Nanobubbles: a new paradigm for air-seeding in xylem. Trends in Plant Science, 20(4), 199–205. doi: 10.1016/j.tplants.2015.01.008 DOI: https://doi.org/10.1016/j.tplants.2015.01.008
Scholander P. F., Hammel H. T., Bradstreet E. D., A., & Hemmingsen, E. A. (1965). Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants. Advancement of Science, 148(3668), 339–346. doi: 10.1126/science.148.3668.339 DOI: https://doi.org/10.1126/science.148.3668.339
Scoffoni, C., Rawls, M., McKown, A., Cochard, H., & Sack, L. (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156(2), 832–843. doi: 10.1104/pp.111.173856 DOI: https://doi.org/10.1104/pp.111.173856
Shane, M. W., McCully, M. E., & Canny, M. J. (2000). Architecture of branch-root junctions in maize: structure of the connecting xylem and the porosity of the pit membranes. Annals of Botany, 85(5), 613–624 doi: 10.1006/anbo.2000.1113 DOI: https://doi.org/10.1006/anbo.2000.1113
Slatyer, K. O. & Taylor, S. A. (1960). Terminology in plant and soil water relations. Nature, 187, 922–924. DOI: https://doi.org/10.1038/187922a0
Sperry, J. S. (1986). Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiology, 80(1), 110–116. doi: 10.1104/pp.80.1.110 DOI: https://doi.org/10.1104/pp.80.1.110
Sperry, J. S., Donnelly, J. R., & Tyree, M. T. (1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment, 11(1), 35–40. doi: 10.1111/j.1365-3040.1988.tb01774.x DOI: https://doi.org/10.1111/j.1365-3040.1988.tb01774.x
Sperry, J. S. & Saliendra, N. Z. (1994). Intra-and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell and Environment, 17(11), 1233–1241. doi: 10.1111/j.1365-3040.1994.tb02021.x DOI: https://doi.org/10.1111/j.1365-3040.1994.tb02021.x
Sperry, J. S., Saliendra, N. Z., Pockman, W. T., Cochard, H., Cruiziat, P., Davis, S. D., … Tyree, M. T. (1996). New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant, Cell and Environment, 19(4), 427–436. doi: 10.1111/j.1365-3040.1996.tb00334.x DOI: https://doi.org/10.1111/j.1365-3040.1996.tb00334.x
Stiller, V. & Sperry, J. S. (1999). Canny’s compensating pressure theory fails a test. American Journal of Botany, 86(8), 1082–1086. doi: 10.2307/2656969 DOI: https://doi.org/10.2307/2656969
Stiller, V. & Sperry, J. S. (2002). Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.). Journal of Experimental Botany, 53(371), 1155–1161. doi: 10.1093/jexbot/53.371.1155 DOI: https://doi.org/10.1093/jexbot/53.371.1155
Streeter, L., Wylie, E., & Bedford, K. (2000). Mecánica de fluídos (9a ed.). Santafé de Bogotá, Colombia: Mc. Graw Hill.
Taiz, L. & Zeiger, E. (2012). Plant Physiology (5a ed.). Sunderland (Massachusetts), USA: Sinauer Associates.
Trakal, L., Martínez-Fernández, D., Vitková, M., & Komárek, M. (2015). Phytoextraction of metals: modeling root metal uptake and associated processes. En A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation (pp.69-83) (1a ed.). New York, USA: Springer. doi: 10.1007/978-3-319-10969-5 DOI: https://doi.org/10.1007/978-3-319-10395-2_6
Trifilò, P., Nardini, A., Raimondo, F., Lo Gullo, M. A., & Salleo, S. (2011). Ion mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis L. Functional Plant Biology, 38(7), 606–613. doi: 10.1071/FP10233 DOI: https://doi.org/10.1071/FP10233
Tyree, M. T. & Ewers, F. W. (1991). Tansley Review No. 34. The hydraulic architecture of trees and other woody plants. New Phytologist, 119(34), 345–360. doi: 10.1111/j.1469-8137.1991.tb00035.x DOI: https://doi.org/10.1111/j.1469-8137.1991.tb00035.x
Tyree, M. T., Nardini, A., & Salleo, S. (2000). Hydraulic architecture of whole plants and single leaves. In M. Labrecque (Ed.), L’arbre 2000 the Tree (pp. 215–221). Montreal, Canada: Isabelle Quentin Publisher.
Tyree, M. T. & Sperry, J. S. (1989). Vulnerability of xilem to cavitation and embolism. Annual Review of Plant Physiology, 40(1), 19–38. doi: 10.1146/annurev.pp.40.060189.000315 DOI: https://doi.org/10.1146/annurev.pp.40.060189.000315
Tyree, M. T. & Yianoulis, P. (1980). The site of water evaporation from sub-stomatal cavities, liquid path resistances and hydroactive stomatal closure. Annals of Botany, 46(2), 175–193. doi: 10.1093/oxfordjournals.aob.a085906 DOI: https://doi.org/10.1093/oxfordjournals.aob.a085906
Tyree, M. T., & Zimmermann, M. H. (2002). Xylem structure and the ascent of sap. (2a ed.). Berlin, Germany: Springer-Verlag Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-662-04931-0
Van den Honert, T. H. (1948). Water transport in plants as a catenary process. Discussions of the Faraday Society, 3, 146–153. doi: 10.1039/DF9480300146 DOI: https://doi.org/10.1039/df9480300146
Van Doorn, W. G., Hiemstra, T., & Fanurakis, D. (2011). Hydrogel regulation of xylem water flow: an alternative hypothesis. Plant Physiology, 157(4), 1642–1649. doi: 10.1104/pp.111.185314 DOI: https://doi.org/10.1104/pp.111.185314
Wheeler, J. K., Huggett, B. A., Tofte, A, N., Rockwell, F. E., & Holbrook, N. M. (2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell and Environment, 36(11), 1938–1949. doi: 10.1111/pce.12139 DOI: https://doi.org/10.1111/pce.12139
Willats, W. G., McCartney, L., Mackie, W., & Knox, J. P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 47(1-2), 9–27. doi: 10.1023/A:1010662911148 DOI: https://doi.org/10.1023/A:1010662911148
Zimmermann, M. H. (1983). Xylem structure and the ascent of sap. (1a ed.). Berlin, Germany: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-662-22627-8_1
Zimmermann, U., Schneider, H., Wegner, L. H., & Haase, A. (2004). Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytologist, 162(3), 575–615. doi: 10.1111/j.1469-8137.2004.01083.x DOI: https://doi.org/10.1111/j.1469-8137.2004.01083.x
Zwieniecki, M. A., Melcher, P. J., & Holbrook, N. M. (2001). Hydrogel control of xylem hydraulic resistance in plants. Science, 291(5506), 1059–1062. doi: 10.1126/science.1057175 DOI: https://doi.org/10.1126/science.1057175
Publicado
Cómo citar
-
Resumen2158
-
PDF406
-
LENS138
Número
Sección
Licencia
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.