Respuesta de Quercus coccifera a la herbivoría en un ambiente de enriquecimiento de CO2 atmosférico

Autores/as

DOI:

https://doi.org/10.21829/myb.2019.253581

Palabras clave:

cambio climático, matorral, cabras

Resumen

Resultado de las actividades antrópicas la concentración de CO2 atmosférico ha aumentado de manera vertiginosa en el último siglo. Ante este futuro escenario de cambio, el objetivo del presente estudio ha sido evaluar la respuesta de la vegetación característica de los ecosistemas forestales mediterráneos (Quercus coccifera) bajo distinto grado de herbivoría y concentración de CO2 atmosférico. Para examinar los efectos del consumo parcial sobre el crecimiento de las plantas se simularon tres niveles de herbivoría (nulo, moderado y alto) y dos concentraciones de CO2 atmosférico (380 µmol mol-1 y 700 µmol mol-1). Los resultados mostraron que el grado de herbivoría simulado fue el principal factor que limitó el crecimiento de las plántulas de Q. coccifera: bajo un grado de herbivoría moderado, para ambos ambientes de CO2, las plantas de Q. coccifera presentaron un desarrollo significativamente mayor que las plantas intactas y aquellas sometidas a un grado de herbivoría alto. Este estudio supone una primera aproximación sobre la tolerancia a exceso de CO2 atmosférico y herbivoría de matorrales mediterráneos, pero son necesarios futuros estudios que arrojen luz a muchas de las situaciones naturales de estrés (abiótico y biótico).

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Juan Manuel Mancilla-Leytón,

Universidad de Sevilla

Universidad de Sevilla. Departamento de Biología Vegetal y Ecología. Sevilla, España

Jesús Cambrollé,

Universidad de Sevilla

Universidad de Sevilla. Departamento de Biología Vegetal y Ecología. Sevilla, España

Citas

Andreu-Hayles, L., Planells, O., Gutierrez, E., Muntan, E., Helle, G., Anchukaitis, K. J., & Schleser, G. H. (2011). Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forest. Global Change Biology, 17(6), 2095–2112. doi: 10.1111/j.1365-2486.2010.02373.x DOI: https://doi.org/10.1111/j.1365-2486.2010.02373.x

Björkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170(4), 489-504. doi: 10.1007/BF00402983 DOI: https://doi.org/10.1007/BF00402983

Bolhàr-Nordenkampf, H. R., & Öquist, G. (1993). Chlorophyll fluorescence as a tool in photosynthesis research. En D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, & S. P. Long (Eds.) Photosynthesis and Production in a Changing Environment. Springer (pp. 193-206). Dordrecht, Holanda: Springer. DOI: https://doi.org/10.1007/978-94-010-9626-3_12

Bugalho, M. N., Caldeira, M. C., Pereira, J. S., Aronson, J., & Pausas, J. G. (2011). Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment, 9(5), 278-286. doi:10.1890/100084 DOI: https://doi.org/10.1890/100084

Cambrollé, J., Mancilla-Leytón, J. M., Muñoz-Vallés, S., Luque, T., & Figueroa, M. E. (2012). Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere, 86(9), 867-874. doi: 10.1016/j.chemosphere.2011.10.039 DOI: https://doi.org/10.1016/j.chemosphere.2011.10.039

Castells, E., Peñuelas, J., & Valentine, D. W. (2004). Are phenolic compounds released from the Mediterranean shrub Cistus albidus responsible for changes in N cycling in siliceous and calcareous soils? New Phytologist, 162(1), 187-195. doi: 10.1111/j.1469-8137.2004.01021.x DOI: https://doi.org/10.1111/j.1469-8137.2004.01021.x

Ciancio, O., & Nocentini, S. (2011). Biodiversity conservation and systemic silviculture: concepts and applications. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 145(2), 411-418. doi: 10.1080/11263504.2011.558705 DOI: https://doi.org/10.1080/11263504.2011.558705

Cruz, C., Lips, H., & Martins-Loução, M. A. (2003). Nitrogen use efficiency by a slow-growing species as affected by CO2 levels, root temperature, N source and availability. Journal of Plant Physiology, 160(12), 1421-1428. doi: 10.1078/0176-1617-00998 DOI: https://doi.org/10.1078/0176-1617-00998

Givnish, T. J. (1988). Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology, 15(2), 63-92. doi: 10.1071/PP9880063 DOI: https://doi.org/10.1071/PP9880063

Gómez-Aparicio, L., Zamora, R., Gómez, J. M., Hódar, J. A., Castro, J., & Baraza, E. (2004). Applying plant facilitation to forest restoration: a meta‐analysis of the use of shrubs as nurse plants. Ecological Applications, 14(4), 1128-1138. doi: 10.1890/03-5084 DOI: https://doi.org/10.1890/03-5084

Hernández-Santana, V., Martínez-Vilalta, J., Martínez-Fernández, J., & Williams, M. (2009). Evaluating the effect of drier and warmer conditions on water use by Quercus pyrenaica. Forest Ecology and Management, 258(7), 1719-1730. doi: 10.1016/j.foreco.2009.07.038 DOI: https://doi.org/10.1016/j.foreco.2009.07.038

Hoagland, D. R., Arnon, D., 1938. The water culture method for growing plants without soil. Berkeley, California: California Agricultural Experimental Station, Circular 347.

Hoffman, T. (1989). Vegetation studies and the impact of grazing in the semi-arid eastern Cape. Tesis doctoral, University of Cape Town, Sudáfrica.

Panel Intergubernamental del Cambio Climático [IPCC] (2018). Summary for Policymakers. En: V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (pp 32). Geneva, Switzerland: World Meteorological Organization.

Jong, R., Schaepman, M. E., Furrer, R., De Bruin, S., & Verburg, P. H. (2013). Spatial relationship between climatologies and changes in global vegetation activity. Global Change Biology, 19(6), 1953-1964. DOI: https://doi.org/10.1111/gcb.12193

Karl, T. R., & Trenberth, K. E. (2003). Modern global climate change. Science, 302(5651), 1719-1723. doi: 10.1111/gcb.12193 DOI: https://doi.org/10.1126/science.1090228

Knapp, A. K., Hoover, D. L., Wilcox, K. R., Avolio, M. L., Koerner, S. E., La Pierre, K. J., & Smith, M. D. (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21(7), 2624-2633. doi: 10.1111/gcb.12888 DOI: https://doi.org/10.1111/gcb.12888

Kumar, P. (2013). Hydrology: seasonal rain changes. Nature Climate Change, 3(9), 783. doi: 10.1038/nclimate1996 DOI: https://doi.org/10.1038/nclimate1996

Lagendijk, D. G., Howison, R. A., Esselink, P., Ubels, R., & Smit, C. (2017). Rotation grazing as a conservation management tool: Vegetation changes after six years of application in a salt marsh ecosystem. Agriculture, Ecosystems & Environment, 246, 361-366. doi: 10.1016/j.agee.2017.05.023 DOI: https://doi.org/10.1016/j.agee.2017.05.023

Leiva, M. J., Mancilla-Leyton, J. M., & Martín Vicente, Á. (2013). Methods to improve the recruitment of holm-oak seedlings in grazed Mediterranean savanna-like ecosystems (dehesas). Annals of forest science, 70(1), 11-20. 10.1007/s13595-012-0225-0 DOI: https://doi.org/10.1007/s13595-012-0225-0

Lezama, F., Baeza, S., Altesor, A., Cesa, A., Chaneton, E. J., & Paruelo, J. M. (2014). Variation of grazing‐induced vegetation changes across a large‐scale productivity gradient. Journal of Vegetation Science, 25(1), 8-21. doi: 10.1111/jvs.12053 DOI: https://doi.org/10.1111/jvs.12053

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. DOI: https://doi.org/10.1016/0076-6879(87)48036-1

Mancilla‐Leytón, J. M., Pino Mejías, R., & Martín Vicente, A. (2013). Do goats preserve the forest? Evaluating the effects of grazing goats on combustible Mediterranean scrub. Applied Vegetation Science, 16(1), 63-73. doi: 10.1111/j.1654-109X.2012.01214.x DOI: https://doi.org/10.1111/j.1654-109X.2012.01214.x

Maseyk, K., Hemming, D., Angert, A., Leavitt, S. W., & Yakir, D. (2011). Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. Oecologia, 167(2), 573-585. doi: 10.1007/s00442-011-2010-4 DOI: https://doi.org/10.1007/s00442-011-2010-4

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659-668. doi: 10.1093/jexbot/51.345.659 DOI: https://doi.org/10.1093/jexbot/51.345.659

Mena, Y., Ruiz-Mirazo, J., Ruiz, F. A., & Castel, J. M. (2016). Characterization and typification of small ruminant farms providing fuelbreak grazing services for wildfire prevention in Andalusia (Spain). Science of the Total Environment, 544, 211-219. doi: 10.1016/j.scitotenv.2015.11.088 DOI: https://doi.org/10.1016/j.scitotenv.2015.11.088

Midoko‐Iponga, D., Krug, C. B., & Milton, S. J. (2005). Competition and herbivory influence growth and survival of shrubs on old fields: Implications for restoration of renosterveld shrubland. Journal of Vegetation Science, 16(6), 685-692. doi: 10.1111/j.1654-1103.2005.tb02411.x DOI: https://doi.org/10.1111/j.1654-1103.2005.tb02411.x

Morgan, J. A., Pataki, D. E., Körner, C., Clark, H., Del Grosso, S. J., Grünzweig, J. M., & Nippert, J. B. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140(1), 11-25. doi: 10.1007/s00442-004-1550-2 DOI: https://doi.org/10.1007/s00442-004-1550-2

Peñuelas, J., Filella, I., Llusia, J., Siscart, D., & Piñol, J. (1998). Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia. Journal of Experimental Botany, 49(319), 229-238. doi: 10.1093/jxb/49.319.229 DOI: https://doi.org/10.1093/jxb/49.319.229

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., & Peguero, G. (2017). Impacts of global change on Mediterranean forests and their services. Forests, 8(12), 463. doi: 10.3390/f8120463 DOI: https://doi.org/10.3390/f8120463

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., & Peguero, G. (2018). Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany, 152, 49-59. doi: 10.1016/j.envexpbot.2017.05.012 DOI: https://doi.org/10.1016/j.envexpbot.2017.05.012

Redondo-Gómez, S., Mancilla-Leytón, J. M., Mateos-Naranjo, E., Cambrollé, J., & Martín-Vicente, A. (2010). Differential photosynthetic performance of three Mediterranean shrubs under grazing by domestic goats. Photosynthetica, 48(3), 348-354. doi: 10.1007/s11099-010-0045-0 DOI: https://doi.org/10.1007/s11099-010-0045-0

Sardans, J., & Peñuelas, J. (2013). Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant and Soil, 365(1-2), 1-33. doi: 10.1007/s11104-013-1591-6 DOI: https://doi.org/10.1007/s11104-013-1591-6

Saurer, M., Cherubini, P., Bonani, G., & Siegwolf, R. (2003). Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach. Tree Physiology, 23(14), 997-1004. doi: 10.1093/treephys/23.14.997 DOI: https://doi.org/10.1093/treephys/23.14.997

Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis research, 10(1-2), 51-62. doi: 10.1007/BF00024185 DOI: https://doi.org/10.1007/BF00024185

Thomson, V. P., Cunningham, S. A., Ball, M. C., & Nicotra, A. B. (2003). Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia 134, 167-175, 2003. doi: 10.1007/s00442-002-1102-6 DOI: https://doi.org/10.1007/s00442-002-1102-6

Tognetti, R., & Peñuelas, J. (2003). Nitrogen and carbon concentrations, and stable isotope ratios in Mediterranean shrubs growing in the proximity of a CO2 spring. Biologia Plantarum, 46(3), 411-418. doi: 10.1023/A:1024342606329 DOI: https://doi.org/10.1023/A:1024342606329

Valdés, B., Talavera, S., & Fernandez-Galiano, E. (1987). Flora vascular de Andalucía Occidental. Barcelona, España: Ketres Editora.

Van Hees, A. F. M. (1997). Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation to shading and drought. Annales des Sciences Forestières, 54(1), 9-18. EDP Sciences. doi: 10.1051/forest:19970102 DOI: https://doi.org/10.1051/forest:19970102

Werner, C., Correia, O., & Beyschlag, W. (2002). Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. Functional Plant Biology, 29(8), 999-1011. doi: 10.1071/PP01143 DOI: https://doi.org/10.1071/PP01143

Greenhouse Gas Bulletin [WMO] (2017) The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2016. GHG Bulletin - No. 13, Europa.

Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., & Zhao, W. (2015). Time‐lag effects of global vegetation responses to climate change. Global Change Biology, 21(9), 3520-3531. doi: 10.1111/gcb.12945 DOI: https://doi.org/10.1111/gcb.12945

Descargas

Publicado

2019-12-03

Cómo citar

Mancilla-Leytón, J. M., & Cambrollé, J. (2019). Respuesta de Quercus coccifera a la herbivoría en un ambiente de enriquecimiento de CO2 atmosférico. Madera Y Bosques, 25(3). https://doi.org/10.21829/myb.2019.253581
Metrics
Vistas/Descargas
  • Resumen
    641
  • PDF
    320
  • LENS
    4

Número

Sección

Artículos Científicos

Métrica

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.