Perspectivas de los anillos de crecimiento para estimación potencial de carbono en México

Autores/as

  • Iliana Bibiana Reyes-Basilio Universidad Juárez del Estado de Durango
  • Andrea Cecilia Acosta-Hernández Universidad Juárez del Estado de Durango
  • Marcos González-Cásares Universidad Juárez del Estado de Durango
  • Marín Pompa-García Universidad Juárez del Estado de Durango https://orcid.org/0000-0001-7156-432X

DOI:

https://doi.org/10.21829/myb.2020.2632112

Palabras clave:

cambio climático, contenido de carbono, dendroecología, ITRBD

Resumen

Los anillos de crecimiento de los árboles han sido útiles como indicadores para estimar la captura de carbono en los ecosistemas forestales. México es considerado un país megadiverso con un gran potencial para las dendrociencias dada su alta variabilidad ambiental. El objetivo del presente estudio es presentar la perspectiva que ofrecen los anillos de crecimiento de los árboles para estimar la captura potencial de carbono en México. Se realizó una revisión bibliográfica a escala mundial, considerando estudios que abarcan proxies dendroecológicos sobre el contenido de carbono almacenado. La revisión incluyó 74 estudios publicados entre 2004 y 2019. Las investigaciones dendroecológicas del contenido de carbono se realizaron principalmente a partir de 2012 en México. La mayoría de estos estudios se basaron en especies como Pinus sylvestris y Fagus sylvatica. Adoptando un enfoque dendroecológico, asociado con técnicas alométricas este estudio ofrece una gran oportunidad para promover el desarrollo del estudio de la dinámica del carbono almacenado en México.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Iliana Bibiana Reyes-Basilio,

Universidad Juárez del Estado de Durango

Facultad de Ciencias Forestales

Andrea Cecilia Acosta-Hernández,

Universidad Juárez del Estado de Durango

Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales

Marcos González-Cásares,

Universidad Juárez del Estado de Durango

Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales

Marín Pompa-García,

Universidad Juárez del Estado de Durango

Facultad de Ciencias Forestales

Citas

Acosta-Hernández, A. C., Pompa-García, M., & Camarero, J. J. (2017). An updated review of dendrochronological investigations in Mexico, a megadiverse country with a high potential for tree-ring sciences. Forests, 8(5), 160. doi: 10.3390/f8050160 DOI: https://doi.org/10.3390/f8050160

Amoroso, M. M., Daniels, L. D., Baker, P. J., & Camarero, J. J. (2017). Dendroecology: tree-ring analyses applied to ecological studies. Ecological Studies Analysis and Synthesis. Berlin/Heidelberg, Germany: Springer. DOI: https://doi.org/10.1007/978-3-319-61669-8

Association for Tree-Ring Research [ATR]. (s. f). Recuperado de http://www.tree-ring.org/

Babst, F., Bouriaud, O., Papale, D., Gielen, B., Janssens, I. A., Nikinmaa, E., Ibrom, A., Wu, J., Bernhofer, C., Köstner, B., Grünwald, T., Seufert, G., Ciais, P., & Frank, D. (2014a). Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytologist, 201(4), 1289-1303. doi: 10.1111/nph.12589 DOI: https://doi.org/10.1111/nph.12589

Babst, F., Bouriaud, O., Alexander, R., Trouet, V., & Frank, D. (2014b). Toward consistent measurements of carbon accumulation: Amulti-site assessment of biomass and basal area increment across Europe. Dendrochronologia, 32(2), 153-161. doi: 10.1016/j.dendro.2014.01.002 DOI: https://doi.org/10.1016/j.dendro.2014.01.002

Bouma, C. L., & Abrams, M. D. (2017). Differential impacts of climate on tree rings across a topographic gradient. International Journal of Environment and Climate Change, 7(2), 92-112. doi: 10.9734/BJECC/2017/33378 DOI: https://doi.org/10.9734/BJECC/2017/33378

Bueno-López, S., García-Lucas, E., & Caraballo-Rojas, L. (2019). Ecuaciones alométricas para biomasa y contenido de carbono en arboles individuales de Pinus occidentalis. Madera y Bosques, 25(3), e2531968. doi: 10.21829/myb.2019.2531868 DOI: https://doi.org/10.21829/myb.2019.2531868

Carnicer, J., Domingo-Marimon, C., Ninyerola, M., Camarero, J., Bastos, A., López-Parages, J., Blanquer, L., Rodríguez-Fonseca, B.,

Lenton, T., Dakos, V., Ribas, M., Gutiérrez, E., Peñuelas, J., & Pons, X. (2019). Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by multidecadal ocean surface temperaturas. Global Change Biology, 25(8), 2825-2840. doi: 10.1111/gcb.14664 DOI: https://doi.org/10.1111/gcb.14664

De Micco, V., Campelo, F., De Luis, M., Bräuning, A., Grabner, M., Battipaglia, G., & P. Cherubini. (2016). Intra-annual density fluctuations in tree rings: how, when, where, and why? IAWA Journal, 37(2), 232-259. doi: 10.1163/22941932-20160132 DOI: https://doi.org/10.1163/22941932-20160132

Díaz-Franco, R., Acosta-Mireles, M., Carrillo-Anzures, F., Buendía-Rodríguez, E., Flores-Ayala, E., & Etchevers-Barra, J. D. (2007). Determinación de ecuaciones alométricas para estimar biomasa y carbono en Pinus patula Schl. et Cham. Madera y Bosques, 13(1), 25-34. doi: 10.21829/myb.2007.1311233 DOI: https://doi.org/10.21829/myb.2007.1311233

Ercanli, İ., Günlü, A., Şenyurt, M., Bolat, F., & Kahriman, A. (2016). Artificial neural network for predicting stand carbon stock from remote sensing data for even-aged scots pine (Pinus sylvestris L.) Stands in the taşköprü-çiftlik forests. 1st International Symposium of Forest Engineering and Technologies (FETEC 2016): Forest Harvesting and Roading in Environmentally Sensitive Areas, 02-04 June 2016, 2016, Bursa, Turkey.

Fayolle, A., Ngomanda, A., Mbasi, M., Barbier, N., Bocko, Y., Boyemba, F., & Kondaoule, H. J. (2018). A regional allometry for the Congo basin forests based on the largest ever destructive sampling. Forest Ecology and Management, 430(15), 228-240. doi: 0.1016/j.foreco.2018.07.030 DOI: https://doi.org/10.1016/j.foreco.2018.07.030

Gayoso, J., & Schlegel, B. (2001). Guía para la formulación de proyectos forestales de carbono. Universidad Austral de Chile. Proyecto FONDEF D 98I1076. Valdivia, Chile.

Genet, H., Bréda, N., & Dufrëne, E. (2009). Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petra (Matt.) Liebl.) using a chronosequence approach. Tree Physiology, 30(2), 177-192. doi: 10.1093/treephys/tpp105 DOI: https://doi.org/10.1093/treephys/tpp105

González-Cásares, M., Pompa-García, M., Venegas-González, A., Domínguez-Calleros, P., Hernández-Díaz, J., Carrillo-Parra, A., & González-Tagle, M. (2019). Hydroclimatic variations reveal differences in carbon capture in two sympatric conifers in northern Mexico. Peer Journal, 7, e7085. doi: 10.7717/peerj.7085 DOI: https://doi.org/10.7717/peerj.7085

Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., & Penman, J. (2017). The key role of forests in meeting climate targets requires science for credible mitigation. Nature Climate Change, 7(3), 220-226. doi: 10.1038/nclimate3227 DOI: https://doi.org/10.1038/nclimate3227

Grissino-Mayer, H. D., & Fritts, H. C. (1997). The International Tree-Ring Data Bank: an enhanced global database serving the global scientific community. The Holocene, 7(2), 235-238. doi: 10.1177/095968369700700212 DOI: https://doi.org/10.1177/095968369700700212

Jain, J. J., & Levine, D. (2019). U.S. Patent No. 10,431,095. Washington, DC: U.S. Patent and Trademark Office.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. doi: 10.1127/0941-2948/2006/0130 DOI: https://doi.org/10.1127/0941-2948/2006/0130

Liu, Y., Zhang, Y., & Liu, S. (2012). Aboveground carbon stock evaluation with different restoration approaches using tree ring chronosequences in Southwest China. Forest Ecology and Management, 263(1), 39-46. doi: 10.1016/j.foreco.2011.09.008 DOI: https://doi.org/10.1016/j.foreco.2011.09.008

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). Un estudio de los métodos de estimación de biomasa aérea basados en sensores remotos en ecosistemas forestales. Revista Internacional de Tierra Digital, 9(1), 63-105.

Manzanilla-Quiñones, U., Aguirre-Calderón, Ó. A., Jiménez-Pérez, J., Treviño-Garza, E. J., & Yerena-Yamallel, J. I. (2019). Distribución actual y futura del bosque subalpino de Pinus hartwegii Lindl en el Eje Neovolcánico Transversal. Madera y bosques, 25(2), e2521804. doi: 10.21829/myb.2019.2521804 DOI: https://doi.org/10.21829/myb.2019.2521804

McCarroll, D., & Loader, N. J. (2004). Stable isotopes in tree rings. Quaternary Science Reviews, 23(7-8), 771-801. doi: 10.1016/j.quascirev.2003.06.017 DOI: https://doi.org/10.1016/j.quascirev.2003.06.017

Mundo, I. A., Villalba, R., Veblen, T. T., Kitzberger, T., Holz, A., Paritsis, J., & Ripalta, A. (2017). Fire history in southern Patagonia: human and climate influences on fire activity in Nothofagus pumilio forests. Ecosphere, 8(9), e01932. doi: 10.1002/ecs2.1932 DOI: https://doi.org/10.1002/ecs2.1932

Návar J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257(2), 427-434. doi: 10.1016/j.foreco.2008.09.028 DOI: https://doi.org/10.1016/j.foreco.2008.09.028

National Oceanic and Atmospheric Administration [NOAA]. (s. f). Paleoclimatology Data. Recuperado de http://www.ncdc.noaa.gov/paleo/treering.html

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on hearth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11), 933-938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 DOI: https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Pacheco, J. A., Camarero, J. J., Pompa-García, M., Voltas, J., & Carrer, M. (2019). Growth, wood anatomy and stable isotopes show species-specific couplings in three Mexican conifers inhabiting drought-prone áreas. Science of The Total Environment, 68(1), 134055. doi: 10.1016/j.scitotenv.2019.134055 DOI: https://doi.org/10.1016/j.scitotenv.2019.134055

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes. D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993. doi: 0.1126/science.1201609 DOI: https://doi.org/10.1126/science.1201609

Pazdur, A., Nakamura, T., Pawetczyk, S., Pawlyta, J., Piotrowska, N., Rakowski, A., Sensula, B., & Szczepanek, M. (2007). Carbon isotopes in tree rings: climate and the Suess effect inferences in the last 400 years. Radiocarbon, 49(2), 775-788. doi: 10.1017/S003382220004265X DOI: https://doi.org/10.1017/S003382220004265X

Pompa-García, M., Sigala-Rodríguez, J. A., Jurado, E., & Flores, J. (2017). Tissue carbón concentration of 175 Mexican forest species. iForest, 10(4), 754-758. doi: 10.3832/ifor2421-010 DOI: https://doi.org/10.3832/ifor2421-010

Pompa-García, M., & Venegas-González, A. (2016). Temporal variation of wood density and carbon in two elevational sites of Pinus cooperi in relation to climate response in northern Mexico. PLoS ONE, 11(6), e0156782. doi: 10.1371/journal.pone.0156782 DOI: https://doi.org/10.1371/journal.pone.0156782

Pompa-García, M., Venegas-González, A., Júnior, A. A., & Sigala-Rodríguez, J. A. (2018). Dendroecological approach to assessing carbon accumulation dynamics in two Pinus species from northern Mexico. Tree-ring research, 74(2), 196-209. doi: 10.3959/1536-1098-74.2.196 DOI: https://doi.org/10.3959/1536-1098-74.2.196

Primicia, I., Camarero, J. J., Janda, P., Čada, V., Morrissey, R. C., Trotsiuk, V., Bače, R., Teodosiu, M., & Svoboda, M. (2015). Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 354(15), 77-86. doi: 10.1016/j.foreco.2015.06.034 DOI: https://doi.org/10.1016/j.foreco.2015.06.034

Red de dendroecología [DendroRed]. (s. f). Recuperado de https://dendrored.ujed.mx/

Rossi, S., Deslauriers, A., Anfodillo, T., & Carraro, V. (2007). Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 152, 1-12. doi: 10.1007/s00442-006-0625-7 DOI: https://doi.org/10.1007/s00442-006-0625-7

Rojas-García, F., De Jong, B. H., Martínez-Zurimendí, P., & Paz-Pellat, F. (2015). Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science, 72(6), 835-864. doi: 10.1007/s13595-015-0456-y DOI: https://doi.org/10.1007/s13595-015-0456-y

Sánchez-González, A. (2008). Una visión actual de la diversidad y distribución de los pinos de México. Madera y Bosques, 14(1), 107-120. doi: 10.21829/myb.2008.1411222 DOI: https://doi.org/10.21829/myb.2008.1411222

Stoffel, M., & Corona, C. (2014). Dendroecological dating of geomorphic disturbance in trees. Tree-Ring Research, 70(1), 3-20. doi: 10.3959/1536-1098-70.1.3 DOI: https://doi.org/10.3959/1536-1098-70.1.3

Tang, X., Lu, Y., Fehrmann, L., Forrester, D. I., Guisasola-Rodríguez, R., Pérez-Cruzado, C., & Kleinn, C. (2016). Estimation of stand-level aboveground biomass dynamics using tree ring analysis in a Chinese fir plantation in Shitai County, Anhui Province, China. New Forests, 47(2), 319-332. doi: 10.1007/s11056-015-9518-0 DOI: https://doi.org/10.1007/s11056-015-9518-0

Thomas, S. C., & Martin, A. R. (2012). Carbon content of tree tissues: a synthesis. Forests 3: 332-352. doi: 10.3390/f3020332 DOI: https://doi.org/10.3390/f3020332

Tree Ring Society [TRS]. (s. f). Paleoclimatology Data. Recuperado de http://www.treeringsociety.org/

Villanueva, J., Gómez, A., Cerano, J., Rosales, S., Estrada, J., Castruita, L. U., & Martínez, A. R. (2017). La variabilidad del caudal del río Acaponeta inferida mediante series de anillos de crecimiento en coníferas. Tecnología y Ciencias del Agua, 8(3), 55-74. doi: 10.24850/j-tyca-2017-03-04 DOI: https://doi.org/10.24850/j-tyca-2017-03-04

Yao, Y., Piao, S., & Wang, T. (2018). Future biomass carbon sequestration capacity of Chinese forests. Science Bulletin, 63(17), 1108-1117. doi: 10.1016/j.scib.2018.07.015 DOI: https://doi.org/10.1016/j.scib.2018.07.015

Waterhouse, J. S., Switsur, V. R., Barker, A. C., Carter, A. H. C., & Robertson, I. (2002). Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth and Planetary Science Letters, 201(2), 421-430. doi: 10.1016/S0012-821X(02)00724-0 DOI: https://doi.org/10.1016/S0012-821X(02)00724-0

Wigley, T. M., Briffa, K. R., & Jones, P. D. (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology, 23(2), 201-213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

Worbes, M., & Raschke, N. (2012). Carbon allocation in a Costa Rican dry forest derived from tree ring análisis. Dendrochronologia, 30(3), 231-238. doi: 10.1016/j.dendro.2011.11.001. DOI: https://doi.org/10.1016/j.dendro.2011.11.001

Descargas

Publicado

2020-09-30

Cómo citar

Reyes-Basilio, I. B., Acosta-Hernández, A. C., González-Cásares, M., & Pompa-García, M. (2020). Perspectivas de los anillos de crecimiento para estimación potencial de carbono en México. Madera Y Bosques, 26(3). https://doi.org/10.21829/myb.2020.2632112
Metrics
Vistas/Descargas
  • Resumen
    925
  • PDF
    1258
  • Supl. 1
    271
  • Supl. 2
    123
  • LENS
    3

Número

Sección

Revisiones bibliográficas

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.