Bioindicadores de suelo asociados a diferentes regímenes de gestión de plantaciones de Cedrela odorata

Autores/as

DOI:

https://doi.org/10.21829/myb.2021.2711912

Palabras clave:

acetilesterasa, cedro, bosque, limón persa, fosfatasa, metabolismo del suelo

Resumen

Un buen bioindicador de la salud del suelo es aquel que percibe cambios menores, debidos a modificaciones en el manejo del suelo, y conduce a cambios en los procesos del ecosistema suelo. El objetivo fue evaluar el uso de bioindicadores de suelo en la determinación de la utilidad de dos sistemas diferentes de manejo forestal de Cedrela odorata. El mantillo y el suelo se recolectaron de la rizosfera de un monocultivo (sin fertilización ni irrigación) y un cocultivo (con fertilización e irrigación) con Citrus latifolia. Los bioindicadores de suelo y mantillo medidos fueron: las actividades acetilesterasa (FDA), fosfatasa ácida (AcPh), fosfatasa alcalina (AlkPh) y lacasa. También se estimó la tasa neta potencial de mineralización de carbono (PNRCM). Los resultados indican que las actividades enzimáticas del suelo (FDA y fosfatasas) en el mantillo fueron sensibles a los diferentes sistemas de manejo. La actividad enzimática, por unidad de peso seco, fue mayor en los cocultivos (FDA = 1.05 nkat g-1; AcPh = 1.33 nkat g-1; AlkPh = 3 nkat g-1) que en los monocultivos (FDA = 0.617 nkat g-1; AcPh = 0.40 nkat g-1; AlkPh = 0. 983 nkat g-1). Se encontraron diferencias en la cantidad de nitrógeno total, el contenido de materia orgánica (MO) y los micronutrientes. En general, los cultivos (con fertilización e irrigación) con C. latifolia mostraron los mejores resultados.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Enrique Alarcón Gutiérrez,

Universidad Veracruzana

SNI 1, experto en procesos biológicos en suelos.

Christian Hernández,

Universidad Veracruzana

Instituto de Biotecnología y Ecología Aplicada

Terrence Gardner,

Universidad Veracruzana

Department of Soil Science.

José Antonio García Pérez,

Universidad Veracruzana

Facultad de Biología

Anne Marie a Farnet da Silva,

Aix Marseille Université

Aix Marseille Université. Centre national de la recherche scientifique (CNRS), Institut de recherche pour le développement (IRD) / Avignon Université, Institut Méditerranéen de la Biodiversité et d'Ecologie marine et continentale (IMBE)

Isabelle Gaime Perraud,

Aix Marseille Université

Aix Marseille Université. Centre national de la recherche scientifique (CNRS), Institut de recherche pour le développement (IRD) / Avignon Université, Institut Méditerranéen de la Biodiversité et d'Ecologie marine et continentale (IMBE)

Isabelle Barois,

Instituto de Ecología, A.C.

Red de Ecología Funcional

Citas

Acosta-Martínez, V., Cruz, L., Sotomayor-Ramírez, D., & Pérez-Alegría, L. (2007). Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology, 35(1), 35–45. doi: 10.1016/j.apsoil.2006.05.012 DOI: https://doi.org/10.1016/j.apsoil.2006.05.012

Adnane, B., Faghire, M., Abdi, N., Farissi, M., Sifi, B., Drevon, J.-J., Ikbal, M., & Ghoulam, C. (2012). Low soil phosphorus availability increases acid phosphatases activities and affects p partitioning in nodules, seeds and Rhizosphere of Phaseolus vulgaris. Agriculture, 2(2), 139-153 doi: 10.3390/agriculture2020139 DOI: https://doi.org/10.3390/agriculture2020139

Aguilar-Luna, J. M. E., Solorio-Sánchez, F. J., Hernández-Daumás, S., Huerta-Lwanga, E., & Macario-Mendoza, P. A. (2011). Interacciones radicales y aéreas en la asociación agroforestal cedro-limón-chaya. Tropical and Subtropical Agroecosystems, 14(2), 441–451.

Akmal, M., Altaf, M. S., Hayat, R., Hassan, F. U., & Islam, M. (2012). Temporal changes in soil urease, alkaline phosphatase and dehydrogenase activity in rainfed wheat field of Pakistan. Journal of Animal and Plant Sciences, 22(2), 457–462.

Alam, M. S., Ren, G. D., Lu, L., Zheng, Y., Peng, X. H., & Jia, Z. J. (2013). Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil. Biogeosciences, 10(8), 5739–5753. doi: 10.5194/bg-10-5739-2013 DOI: https://doi.org/10.5194/bg-10-5739-2013

Alarcón-Gutiérrez, E., Floch, C., Ruaudel, F., & Criquet, S. (2008). Non-enzymatic hydrolysis of fluorescein diacetate (FDA) in a Mediterranean oak (Quercus ilex L.) litter. European Journal of Soil Science, 59(2), 139–146. doi: 10.1111/j.1365-2389.2007.00963.x DOI: https://doi.org/10.1111/j.1365-2389.2007.00963.x

Alvear, M., Urra, C., Huaiquilao, R., Astorga, M., & Reyes, F. (2007). Actividades biológicas y estabilidad de agregados en un suelo del bosque templado chileno bajo dos etapas sucesionales y cambios estacionales. Revista de La Ciencia Del Suelo y Nutrición Vegetal, 7(3), 38–50. doi: 10.4067/S0718-27912007000300004

Arrieche-Luna, E., & Ruiz-Dager, M. (2010). Influence of inorganic and organic fertilization on microbial biomass carbon and maize yield in two soils of contrasting pH. Agrociencia, 44(3), 249–260.

Avellaneda-Torres, L. M., Melgarejo, L. M., Narváez-Cuenca, C. E., & Sánchez, J. (2013). Enzymatic activities of potato crop soils subjected to conventional management and grassland soils. Journal of Soil Science and Plant Nutrition, 13(2), 301–312. doi: 10.4067/S0718-95162013005000025 DOI: https://doi.org/10.4067/S0718-95162013005000025

Baldrian, P., Kolařík, M., Štursová, M., Kopecký, J., Valášková, V., Větrovský, T., Žifčáková, L., Šnajdr, J., Rídl, J., Vlček, Č., & Voříšková, J. (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal, 6(2), 248–258. doi: 10.1038/ismej.2011.95 DOI: https://doi.org/10.1038/ismej.2011.95

Baležentienė, L., & Klimas, E. (2009). Effect of organic and mineral fertilizers and land management on soil enzyme activities. Agronomy Research, 7(1), 191-197.

Banerjee, A., Sanyal, S., & Sen, S. (2012). Soil phosphatase activity of agricultural land: A possible index of soil fertility. Retrieved from https://www.semanticscholar.org/paper/Soil-phosphatase-activity-of-agricultural-land%3A-A-Banerjee-Sanyal/81401656964f6cc4ed8c1f64f5e1bfd75cbc18d0

Bini, D., Santos, C. A. dos, Silva, M. C. P. da, Bonfim, J. A., & Cardoso, E. J. B. N. (2018). Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis. Scientia Agricola, 75, 102–110. doi: 10.1590/1678-992X-2016-0337 DOI: https://doi.org/10.1590/1678-992x-2016-0337

Blackwood, C. B., Waldrop, M. P., Zak, D. R., & Sinsabaugh, R. L. (2007). Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environmental Microbiology, 9(5), 1306-1316. doi: 10.1111/j.1462-2920.2007.01250.x DOI: https://doi.org/10.1111/j.1462-2920.2007.01250.x

Bray, R. H., & Kurtz, L. T. (1945, January). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39–46. DOI: https://doi.org/10.1097/00010694-194501000-00006

Burns, R., Deforest, J., Marxsen, J., Sinsabaugh, R., Stromberger, M., Wallenstein, M., Weintraub, M., & Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234. doi: 10.1016/j.soilbio.2012.11.009 DOI: https://doi.org/10.1016/j.soilbio.2012.11.009

Caldwell, B. A. (2005). Enzyme activities as a component of soil biodiversity: A review. Pedobiologia, 49(6), 637–644. doi: 10.1016/j.pedobi.2005.06.003 DOI: https://doi.org/10.1016/j.pedobi.2005.06.003

Coleman, D. C., Anderson, R. V., Cole, C. V., Elliott, E. T., Woods, L., & Campion, M. K. (1977). Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon. Microbial Ecology, 4(4), 373–380. doi: 10.1007/BF02013280 DOI: https://doi.org/10.1007/BF02013280

Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician, 35(3), 124–129. doi: 10.2307/2683975 DOI: https://doi.org/10.1080/00031305.1981.10479327

Criquet, S., Tagger, S., Vogt, G., Iacazio, G., & Le Petit, J. (1999). Laccase activity of forest litter. Soil Biology and Biochemistry, 31(9), 1239–1244. doi: 10.1016/S0038-0717(99)00038-3 DOI: https://doi.org/10.1016/S0038-0717(99)00038-3

Della Mónica, I. F., Godoy, M. S., Godeas, A. M., & Scervino, J. M. (2018). Fungal extracellular phosphatases: Their role in P cycling under different pH and P sources availability. Journal of Applied Microbiology, 124(1), 155–165. doi: 10.1111/jam.13620 DOI: https://doi.org/10.1111/jam.13620

Diez J, M. C., Gallardo A, F., Saavedra, G., Cea L, M., Gianfreda, L., & Alvear Z, M. (2006). Effect of pentachlorophenol on selected soil enzyme activities in a Chilean Andisol. Revista de la Ciencia del Suelo y Nutrición Vegetal, 6(3), 40–51. doi: 10.4067/S0718-27912006000300004 DOI: https://doi.org/10.4067/S0718-27912006000300004

Drobnik, T., Greiner, L., Keller, A., & Grêt-Regamey, A. (2018). Soil quality indicators – From soil functions to ecosystem services. Ecological Indicators, 94, 151–169. doi: 10.1016/j.ecolind.2018.06.052 DOI: https://doi.org/10.1016/j.ecolind.2018.06.052

Feng, G., Su, Y., Li, X., Wang, H., Zhang, F., Tang, C., & Rengel, Z. (2002). Histochemical visualization of phosphatase released by arbuscular mycorrhizal fungi in soil. Journal of Plant Nutrition, 25(5), 1–1. doi: 10.1081/PLN-120003932 DOI: https://doi.org/10.1081/PLN-120003932

Gadzała-Kopciuch R., Berecka B., Bartoszewicz J., Buszewski B. (2004). Some considerations about bioindicators in environmental monitoring. Polish Journal of Environmental Studies, 13(5), 453–462.

Gajda, A., & Martyniuk, S. (2005). Microbial biomass C and N and activity of enzymes in soil under winter wheat grown in different crop management systems. Polish Journal of Environmental Studies, 14(2), 159-163.

Gajda, A., Przewłoka, B., & Gawryjołek, K. (2013). Changes in soil quality associated with tillage system applied. International Agrophysics, 27(2), 133-141, doi: 10.2478/v10247-012-0078-7 DOI: https://doi.org/10.2478/v10247-012-0078-7

García-Palacios, P., McKie, B. G., Handa, I. T., Frainer, A., & Hättenschwiler, S. (2016). The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 30(5), 819–829. doi: 10.1111/1365-2435.12589 DOI: https://doi.org/10.1111/1365-2435.12589

García-Ruiz, R., Ochoa, V., Hinojosa, M. B., & Carreira, J. A. (2008). Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 40(9), 2137–2145. doi: 10.1016/j.soilbio.2008.03.023 DOI: https://doi.org/10.1016/j.soilbio.2008.03.023

Gardner, T., Acosta-Martinez, V., Senwo, Z., & Dowd, S. E. (2011). Soil rhizosphere microbial communities and enzyme activities under organic farming in Alabama. Diversity, 3(3), 308–328. doi: 10.3390/d3030308 DOI: https://doi.org/10.3390/d3030308

Green, V. S., Stott, D. E., & Diack, M. (2006). Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biology and Biochemistry, 38(4), 693–701. doi: 10.1016/j.soilbio.2005.06.020 DOI: https://doi.org/10.1016/j.soilbio.2005.06.020

Ding, G. C., Piceno, Y. M., Heuer, H., Weinert, N., Dohrmann, A. B., Carrillo, A., Andersen, G. L., Castellanos, T., Tebbe, C. C., & Smalla, K. (2013). Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem. PLoS ONE, 8(3), e59497. doi: 10.1371/journal.pone.0059497 DOI: https://doi.org/10.1371/journal.pone.0059497

Hernández, C., Farnet Da Silva, A.-M., Ziarelli, F., Perraud-Gaime, I., Gutiérrez-Rivera, B., García-Pérez, J. A., & Alarcón, E. (2017). Laccase induction by synthetic dyes in Pycnoporus sanguineus and their possible use for sugar cane bagasse delignification. Applied Microbiology and Biotechnology, 101(3), 1189–1201. doi: 10.1007/s00253-016-7890-0 DOI: https://doi.org/10.1007/s00253-016-7890-0

Ho, I. (1989). Acid phosphatase, alkaline phosphatase, and nitrate reductase activity of selected ectomycorrhizal fungi. Canadian Journal of Botany, 67(3), 750–753. doi: 10.1139/b89-101 DOI: https://doi.org/10.1139/b89-101

Horwitz, W. (1997). Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs. Gaithersburg (Maryland) USA: AOAC International.

Imer, D., Merbold, L., Eugster, W., & Buchmann, N. (2013). Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences, 10(9), 5931–5945. doi: 10.5194/bg-10-5931-2013 DOI: https://doi.org/10.5194/bg-10-5931-2013

Instituto Nacional de Estadística, Geografía e Informática [Inegi] (2009). Prontuario de Información Geográfica Municipal. 96, 9.

Juhos, K., Czigány, S., Madarász, B., & Ladányi, M. (2019). Interpretation of soil quality indicators for land suitability assessment – A multivariate approach for Central European arable soils. Ecological Indicators, 99, 261–272. doi: 10.1016/j.ecolind.2018.11.063 DOI: https://doi.org/10.1016/j.ecolind.2018.11.063

Kaur, R., Sharma, M., & Puri, S. (2013). Comparison of nutrient distribution in monoculture and polyculture land use system of sub-temperate midhills of Himachal Pradesh. Global Journal of Biology, Agriculture & Health Sciences, 2(2), 42–45.

Köppen, W. P. (1936). Das geographische system der klimate (1936). Köppen, W. G. and Geiger R. M., 1–44.

Krämer, S., & Green, D. M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32(2), 179–188. doi: 10.1016/S0038-0717(99)00140-6 DOI: https://doi.org/10.1016/S0038-0717(99)00140-6

Krishnamoorthy, R. V. (1990). Mineralization of phosphorus by faecal phosphatases of some earthworms of Indian tropics. Proceedings: Animal Sciences, 99(6), 509–518. doi: 10.1007/BF03186414 DOI: https://doi.org/10.1007/BF03186414

Kutsch, W. L., Persson, T., Schrumpf, M., Moyano, F. E., Mund, M., Andersson, S., & Schulze, E.-D. (2010). Heterotrophic soil respiration and soil carbon dynamics in the deciduous Hainich forest obtained by three approaches. Biogeochemistry, 100(1), 167–183. doi: 10.1007/s10533-010-9414-9 DOI: https://doi.org/10.1007/s10533-010-9414-9

Li, W., Lu, J., Li, F., Wang, Y., Lu, J., & Li, X. (2011). Fertilization regimes affect the soil biological characteristics of a sudangrass and ryegrass rotation system. Science China. Life Sciences, 54(6), 572–579. doi: 10.1007/s11427-011-4175-9 DOI: https://doi.org/10.1007/s11427-011-4175-9

Li, Y.-T., Rouland, C., Benedetti, M., Li, F., Pando, A., Lavelle, P., & Dai, J. (2009). Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biology and Biochemistry, 41(5), 969–977. doi: 10.1016/j.soilbio.2009.01.021 DOI: https://doi.org/10.1016/j.soilbio.2009.01.021

Lopes, M. M., Salviano, A. a. C., Araujo, A. S. F., Nunes, L. a. P. L., & Oliveira, M. E. (2010). Changes in soil microbial biomass and activity in different Brazilian pastures. Spanish Journal of Agricultural Research, 4, 1253–1259. DOI: https://doi.org/10.5424/sjar/2010084-1411

Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G. & Renella, G. 2003. Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–670. European Journal of Soil Science, 68(1), 2–5. doi: 10.1111/ejss.2_12398 DOI: https://doi.org/10.1111/ejss.2_12398

Nannipieri, P., Giagnoni, L., Landi, L., & Renella, G. (2011). Role of phosphatase enzymes in soil. In E. Bünemann, A. Oberson, & E. Frossard (Eds.) Phosphorus in action (pp. 215–243). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-15271-9_9 DOI: https://doi.org/10.1007/978-3-642-15271-9_9

Nath, R., & Samanta, R. (2012). Soil pH, microbial population, nitrate reductase and alkaline phosphatase activities of different environment of Dibrugarh district, Assam. Advances in Applied Science Research, 3(3), 1772-1775.

Navarrete, A. A., Taketani, R. G., Mendes, L. W., Cannavan, F. de S., Moreira, F. M. de S., & Tsai, S. M. (2011). Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils. Revista Brasileira de Ciência Do Solo, 35, 1527–1540. doi: 10.1590/S0100-06832011000500007 DOI: https://doi.org/10.1590/S0100-06832011000500007

Neal, A. L., & Glendining, M. J. (2019). Calcium exerts a strong influence upon phosphohydrolase gene abundance and phylogenetic diversity in soil. Soil Biology and Biochemistry, 139, 107613. doi: 10.1016/j.soilbio.2019.107613 DOI: https://doi.org/10.1016/j.soilbio.2019.107613

Nunes, M. R., van Es, H. M., Schindelbeck, R., Ristow, A. J., & Ryan, M. (2018). No-till and cropping system diversification improve soil health and crop yield. Geoderma, 328, 30–43. doi: 10.1016/j.geoderma.2018.04.031 DOI: https://doi.org/10.1016/j.geoderma.2018.04.031

Olsson, M. O., & Falkengren-Grerup, U. (2000). Potential nitrification as an indicator of preferential uptake of ammonium or nitrate by plants in an oak woodland understorey. Annals of Botany, 85(3), 299–305. doi: 10.1006/anbo.1999.1075 DOI: https://doi.org/10.1006/anbo.1999.1075

Oshima, Y., Ogawa, N., & Harashima, S. (1996). Regulation of phosphatase synthesis in Saccharomyces cerevisiae - A review. Gene, 179(1), 171–177. doi: 10.1016/S0378-1119(96)00425-8 DOI: https://doi.org/10.1016/S0378-1119(96)00425-8

Paula, F. S., Rodrigues, J. L. M., Zhou, J., Wu, L., Mueller, R. C., Mirza, B. S., Bohannan, B. J. M., Nüsslein, K., Deng, Y., Tiedje, J. M., & Pellizari, V. H. (2014). Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Molecular Ecology, 23(12), 2988–2999. doi: 10.1111/mec.12786 DOI: https://doi.org/10.1111/mec.12786

Peng, Y., Song, S., Li, Z., Li, S., Chen, G., Hu, H., Xie, J., Chen, G., Xiao, Y., Liu, L., Tang, Y., & Tu, L. (2020). Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil Biology and Biochemistry, 142, 107694. doi: 10.1016/j.soilbio.2019.107694 DOI: https://doi.org/10.1016/j.soilbio.2019.107694

Pennington, T. D., Muellner, A. N., & Wise, R. (2010). Monograph of Cedrela (Meliaceae). dh books. https://agris.fao.org/agris-search/search.do?recordID=US201300152329

R Development Core Team. (2010). A language and environment for statistical computing: Reference index. R Foundation for Statistical Computing. http://www.polsci.wvu.edu/duval/PS603/Notes/R/fullrefman.pdf

Robertson G. P., Coleman, D.C., Bledsoe C.S., Sollins P. (1999). Standard soil methods for long-term ecological research. Oxford University Press. Recuperado de https://www.researchgate.net/publication/304047474_Standard_soil_methods_for_long-term_ecological_research DOI: https://doi.org/10.1093/oso/9780195120837.001.0001

Sánchez-Monedero, M. A., Mondini, C., Cayuela, M. L., Roig, A., Contin, M., & De Nobili, M. (2008). Fluorescein diacetate hydrolysis, respiration and microbial biomass in freshly amended soils. Biology and Fertility of Soils, 44, 885–890. doi.org/10.1007/s00374-007-0263-1 DOI: https://doi.org/10.1007/s00374-007-0263-1

Schnürer, J., Clarholm, M., & Rosswall, T. (1985). Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biology and Biochemistry, 17(5), 611–618. doi: 10.1016/0038-0717(85)90036-7 DOI: https://doi.org/10.1016/0038-0717(85)90036-7

Schnürer, J., & Rosswall, T. (1982). Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology, 43(6), 1256–1261. DOI: https://doi.org/10.1128/aem.43.6.1256-1261.1982

Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., …, & Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11(11), 1252–1264. doi: 10.1111/j.1461-0248.2008.01245.x DOI: https://doi.org/10.1111/j.1461-0248.2008.01245.x

Tabatabai, M. A., & Bremner, J. M. (1972). Assay of urease activity in soils. Soil Biology and Biochemistry, 4(4), 479–487. doi: 10.1016/0038-0717(72)90064-8 DOI: https://doi.org/10.1016/0038-0717(72)90064-8

Tarafdar, J. C., & Chhonkar, P. K. (1979). Phosphatase production by microorganisms isolated from diverse types of soils. Zentralblatt Fur Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene. Zweite Naturwissenschaftliche Abteilung: Mikrobiologie Der Landwirtschaft Der Technologie Und Des Umweltschutzes, 134(2), 119–124. doi: 10.1016/s0323-6056(79)80037-3 DOI: https://doi.org/10.1016/S0323-6056(79)80037-3

Tarafdar, J. C., & Jungk, A. (1987). Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biology and Fertility of Soils, 3(4), 199–204. doi: 10.1007/BF00640630 DOI: https://doi.org/10.1007/BF00640630

Trasar-Cepeda, C., Leirós, M. C., & Gil Sotres, F. (2008). Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biology and Biochemistry, 40(9), 2146-2155 doi: 10.1016/j.soilbio.2008.03.015 DOI: https://doi.org/10.1016/j.soilbio.2008.03.015

Udawatta, R. P., Kremer, R. J., Garrett, H. E., & Anderson, S. H. (2009). Soil enzyme activities and physical properties in a watershed managed under agroforestry and row-crop systems. Agriculture, Ecosystems & Environment, 131(1–2), 98–104. doi: 10.1016/j.agee.2008.06.001 DOI: https://doi.org/10.1016/j.agee.2008.06.001

Walkley, A, B., I. A. (1934). An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–263. DOI: https://doi.org/10.1097/00010694-194704000-00001

Wang, B., Xue, S., Liu, G. B., Zhang, G. H., Li, G., & Ren, Z. P. (2012). Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China. CATENA, 92, 186–195. doi: 10.1016/j.catena.2011.12.004 DOI: https://doi.org/10.1016/j.catena.2011.12.004

Widmer, F., Shaffer, B. T., Porteous, L. A., & Seidler, R. J. (1999). Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon cascade mountain range. Applied and Environmental Microbiology, 65(2), 374–380. doi: 10.1128/AEM.65.2.374-380.1999 DOI: https://doi.org/10.1128/AEM.65.2.374-380.1999

Xu, H., Qu, Q., Lu, B.-H., Li, P., Xue, S., & Liu, G. (2020). Response of soil specific enzyme activity to vegetation restoration in the Loess hilly region of China. Catena, 191, 104564 doi: 10.1016/j.catena.2020.104564 DOI: https://doi.org/10.1016/j.catena.2020.104564

Yavitt, J. B., Wright, S. J., & Wieder, R. K. (2004). Seasonal drought and dry-season irrigation influence leaf-litter nutrients and soil enzymes in a moist, lowland forest in Panama. Austral Ecology, 29(2), 177–188. doi: 10.1111/j.1442-9993.2004.01334.x DOI: https://doi.org/10.1111/j.1442-9993.2004.01334.x

Yu, H. Y., Ding, W. X., Luo, J. F., Donnison, A., & Zhang, J. B. (2012). Long-term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam. Soil Use and Management, 28(3), 347–360. doi: 10.1111/j.1475-2743.2012.00415.x DOI: https://doi.org/10.1111/j.1475-2743.2012.00415.x

Yuste, J. C., Baldocchi, D. D., Gershenson, A., Goldstein, A., Misson, L., & Wong, S. (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13(9), 2018–2035. doi: 10.1111/j.1365-2486.2007.01415.x DOI: https://doi.org/10.1111/j.1365-2486.2007.01415.x

Zavarzina, A. G., Lisov, A. V., & Leontievsky, A. A. (2018). The role of ligninolytic enzymes laccase and a versatile peroxidase of the white-rot fungus Lentinus tigrinus in biotransformation of soil humic matter: Comparative in vivo study. Journal of Geophysical Research: Biogeosciences, 123(9), 2727–2742. doi: 10.1029/2017JG004309 DOI: https://doi.org/10.1029/2017JG004309

Descargas

Publicado

2021-08-10

Cómo citar

Alarcón Gutiérrez, E., Hernández, C., Gardner, T., García Pérez, J. A., Caballero, M., Perroni, Y., … Barois, I. (2021). Bioindicadores de suelo asociados a diferentes regímenes de gestión de plantaciones de Cedrela odorata. Madera Y Bosques, 27(1). https://doi.org/10.21829/myb.2021.2711912
Metrics
Vistas/Descargas
  • Resumen
    1512
  • PDF
    476
  • LENS
    14

Número

Sección

Artículos Científicos

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.