Vol. 28 Núm. 1 (2022): Primavera 2022
Revisiones bibliográficas

Tendencias metodológicas para la implementación de sistemas agroforestales en el marco del desarrollo sustentable: una revisión

Marisol Rojas Pardo
Universidad Distrital Francisco José de Caldas.
Biografía
Julio Beltrán Vargas
Universidad Distrital Francisco José de Caldas
Carlos Alfonso Zafra Mejía
Universidad Distrital Francisco José de Caldas

Publicado 2022-03-17

Palabras clave

  • agroforestal,
  • desarrollo rural,
  • desarrollo sustentable,
  • prácticas agrícolas,
  • uso del suelo
  • agroforestry,
  • rural development,
  • sustainable development,
  • agricultural practices,
  • land use

Métrica

Resumen

El objetivo de este trabajo fue establecer las tendencias metodológicas en investigaciones sobre sistemas agroforestales (SAF), identificando dimensiones, enfoques, diseños y variables ambientales que se implementan en su desarrollo. Se empleo la revisión sistemática de literatura de estudios mundiales publicados entre el 2000 y 2020. Mediante frecuencia de citación, se estimó qué dimensiones, enfoques, diseños y variables ambientales se emplearon principalmente en los estudios. El análisis Chi-cuadrado identificó la asociación significativa entre diseños, dimensiones y variables ambientales; y se aplicó un análisis clúster no jerárquico para establecer la distribución de investigaciones con respecto a zonas geográficas, dimensiones y diseños. Se detectaron cuatro dimensiones de investigación: ecológica, social, económica y sistémica. Los enfoques con mayor citación en los estudios fueron: uso del suelo (0.823), manejo del Bosque (0.784), desarrollo comunitario (0.667), conservación de la biodiversidad (0.604), desarrollo rural (0.585) y cambio climático (0.680). Los diseños agroforestales se agruparon en secuenciales (70.0%) y simultáneos (90.0%) y las variables ambiéntales: edafológicas (84,0%), bióticas (70,0%) y socioeconómicas (60,0%) fueron mayormente citadas en las investigaciones. El análisis clúster determino que la dimensión sistémica se desarrolló en África (50.0%), Asia (26.92%) y Europa (23.07%), y la ecológica en América (50.0%) y Asia (30.01%); la social en África (33.3%) y la económica en Asia (10,2%). En conclusión, la dimensión sistémica predominó en la revisión resaltando el carácter sustentable de los SAF. Además, los enfoques, diseños y variables con mayor citación responden a las necesidades productivas de las comunidades y a las características ecológicas de los ecosistemas donde se gestionan estas tecnologías.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Abbas, F., Hammad, H., Fahad, S., Cerdà, A., Rizwan, M., Farhad, W., Ehsan, S., & Bakhat, H. (2017). Agroforestry: A sustainable environmental practice for carbon sequestration under the climate change scenarios- a review. Environmental Science and Pollution Research, 24(12), 11177-11191. https://doi.org/10.1007/s11356-017-8687-0 DOI: https://doi.org/10.1007/s11356-017-8687-0
  2. Adekunle, V., & Bakare, Y. (2004). Rural livelihood benefits from participation in the Taungya agroforestry system in Ondo State of Nigeria. Small-scale Forest Economics, Management and Policy, 3, 131-138. https://doi.org/10.1007/s11842-004-0009-y DOI: https://doi.org/10.1007/s11842-004-0009-y
  3. Afentina, Mcshane, P., & Wright, W. (2020). Ethnobotany, rattan agroforestry, and conservation of ecosystem services in Central Kalimantan, Indonesia. Agroforestry Systems, 94(2), 639-650. https://doi.org/10.1007/s10457-019-00428-x DOI: https://doi.org/10.1007/s10457-019-00428-x
  4. Ajayi, O. C., Place, F., Akinnifesi, F. K., & Sileshi, G. W. (2011). Agricultural success from Africa: The case of fertilizer tree systems in southern Africa (Malawi, Tanzania, Mozambique, Zambia, and Zimbabwe). International Journal of Agricultural Sustainability, 9(1), 129-136. https://doi.org/10.3763/ijas.2010.0554 DOI: https://doi.org/10.3763/ijas.2010.0554
  5. Amadu, F. O., Miller, D. C., & Mcnamara, P. E. (2020). Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecological Economics, 167, 106443. https://doi.org/10.1016/j.ecolecon.2019.106443 DOI: https://doi.org/10.1016/j.ecolecon.2019.106443
  6. Asare, R., Afari, V., Osei, Y., & Pabi, O. (2014). Cocoa agroforestry for increasing forest connectivity in a fragmented landscape in Ghana. Agroforestry Systems, 88 1143-1156. https://doi.org/10.1007/s10457-014-9688-3 DOI: https://doi.org/10.1007/s10457-014-9688-3
  7. Bernard, F., & Minang, P. (2019). Community forestry and REDD+ in Cameroon: What future?. Ecology and Society, 24(1), 14-25. https://doi.org/10.5751/ES-10708-240114 DOI: https://doi.org/10.5751/ES-10708-240114
  8. Bohra, B., Sharma, N., Saxena, S., Sabhlok, V., & Ramakrishna, Y. B. (2018). Socio-economic impact of biofuel agroforestry systems on smallholder and large-holder farmers in Karnataka, India. Agroforestry Systems, 92(3), 759-774. Scopus. https://doi.org/10.1007/s10457-016-0046-5 DOI: https://doi.org/10.1007/s10457-016-0046-5
  9. Chakravarty, S., Puri, A., Subba, M., Pala, N., & Shukla, G. (2017). Homegardens: Drops to Sustainability. En S. Chakravarty, A. Puri, M. Subba, N. Pala, & G. Shukla (Eds.). Agroforestry (1a ed.; pp. 517-527). Springer International Publishing. https://doi.org/10.1007/978-981-10-7650-3_20 DOI: https://doi.org/10.1007/978-981-10-7650-3_20
  10. Chaturvedi, O., Dagar, J., Handa, A., Kaushal, R., & Pandey, V. (2018). Agroforestry potential for increased productivity in degraded watersheds. En J. Chander, & A. Kumar, (Eds.), Ravine lands: Greening for livelihood and environmental security (1a ed.). Springer Singapore. DOI: https://doi.org/10.1007/978-981-10-8043-2_14
  11. Coulibaly, J., Chiputwa, B., Nakelse, T., & Kundhlande, G. (2017). Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agricultural Systems, 155, 52-69. https://doi.org/10.1016/j.agsy.2017.03.017 DOI: https://doi.org/10.1016/j.agsy.2017.03.017
  12. Diaz, S., Settele, J., Brondízio, E., Ngo, H., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K., Butchart, S., Chan, K., Garibaldi, L., Ichii, K., Liu, J., Subramanian, S., Midgley, G., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Revers, B., Roy Chowdhury, R., Shin, Y., Visseren-Hamakers, J. Wills, J. & … Zayas, C. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
  13. Ehret, M., Bühle, L., Graß, R., Lamersdorf, N., & Wachendorf, M. (2015). Bioenergy provision by an alley cropping system of grassland and shrub willow hybrids: Biomass, fuel characteristics and net energy yields. Agroforestry Systems, 89(2), 365-381. https://doi.org/10.1007/s10457-014-9773-7 DOI: https://doi.org/10.1007/s10457-014-9773-7
  14. Ehret, M., Graß, R., & Wachendorf, M. (2018). Productivity at the tree-crop interface of a young willow-grassland alley cropping system. Agroforestry Systems, 92(1), 71-83. https://doi.org/10.1007/s10457-016-0015-z DOI: https://doi.org/10.1007/s10457-016-0015-z
  15. Fischer, A., & Vasseur, L. (2000). The crisis in shifting cultivation practices and the promise of agroforestry: A review of the Panamanian experience. Biodiversity and Conservation, 9(6), 739-756. https://doi.org/10.1023/A:1008939425511 DOI: https://doi.org/10.1023/A:1008939425511
  16. Gebrehiwot, M., Elbakidze, M., & Lidestav, G. (2018). Gender relations in changing agroforestry home gardens in rural Ethiopia. Journal of Rural Studies, 61, 197-205. https://doi.org/10.1016/j.jrurstud.2018.05.009 DOI: https://doi.org/10.1016/j.jrurstud.2018.05.009
  17. Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., & Noble, I. (2013). Policy: Sustainable development goals for people and planet. Nature, 495, 305-307. https://doi.org/10.1038/495305a DOI: https://doi.org/10.1038/495305a
  18. Grossman, J. (2014). Eucalypts in agroforestry, reforestation, and smallholders’ conceptions of “nativeness”: A multiple case study of plantation owners in Eastern Paraguay. Small-scale Forestry, 14(1), 39-57. https://doi.org/10.1007/s11842-014-9272-8 DOI: https://doi.org/10.1007/s11842-014-9272-8
  19. Harvey, C., & González, J. (2007). Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodiversity and Conservation, 16, 2257–2292. https://doi.org/10.1007/s10531-007-9194-2 DOI: https://doi.org/10.1007/s10531-007-9194-2
  20. Herrera, B., Campos, J., Macias, H., Delgado, A., & Salazar, V. (2018). Beyond the traditional home garden: a circa situm conservation experience of Laelia anceps subsp. dawsonii f. chilapensis Soto‑Arenas (Orchidaceae). Environment, Development and Sustainability, 22, 1913-1927. https://doi.org/10.1007/s10668-018-0270-4 DOI: https://doi.org/10.1007/s10668-018-0270-4
  21. Jarett, C., Cummins, I., & Logan, E. (2017). Adapting Indigenous agroforestry systems for integrative landscape Management and Sustainable Supply Chain Development in Napo, Ecuador. En F. Montagnini, Integrative landscapes: Agroforestry for the conservation of biodiversity and food sovereignty (1a ed.; pp. XIX, 501). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-69371-2_12
  22. Kiptot, E., & Franzel, S. (2012). Gender and agroforestry in Africa: A review of women’s participation. Agroforestry Systems, 84(1), 35-58. https://doi.org/10.1007/s10457-011-9419-y DOI: https://doi.org/10.1007/s10457-011-9419-y
  23. Lefroy, E., & Stirzaker, R. (1999). Agroforestry for water management in the cropping zone of southern Australia. Agroforestry Systems, 45(1), 277-302. https://doi.org/10.1023/A:1006241503888 DOI: https://doi.org/10.1023/A:1006241503888
  24. Lesterai, H. (2019). Is smallholder farmer maintaining biodiversity in rattan agroforest? IOP Conference Series: Earth and Environmental Science, 298, 012034. https://doi.org/10.1088/1755-1315/298/1/012034 DOI: https://doi.org/10.1088/1755-1315/298/1/012034
  25. Magcale, D. (2014). Agroforestry models for promoting effective risk management and building sustainable communities. En Kaneko, N., Yoshiura, S., & Kobayashi, M. Sustainable living with environmental risks. Springer International Publishing. DOI: https://doi.org/10.1007/978-4-431-54804-1_6
  26. Marlay, S. (2015). Evaluación del potencial de los proyectos agroforestales para lograr beneficios ambientales y socioeconómicos en zonas rurales de Haití. En F. Montagnini, Sistemas agroforestales. Funciones productivas, socioeconómicas y ambientales. CIPAV. http://www.cipav.org.co/sistagro/SistemasAgroforestales.pdf.
  27. Martinelli, G., Schlindwein, M., Padovan, M., Vogel, E., & Ruviaro, C. (2019). Environmental performance of agroforestry systems in the Cerrado biome, Brazil. World Development, 122, 339-348. https://doi.org/10.1016/j.worlddev.2019.06.003 DOI: https://doi.org/10.1016/j.worlddev.2019.06.003
  28. Mbow, C., van Noordwijk, M., Prabhu, R., & Simons, T. (2014). Knowledge gaps and research needs concerning agroforestry’s contribution to sustainable development goals in Africa. Current Opinion in Environmental Sustainability, 6, 162-170. https://doi.org/10.1016/j.cosust.2013.11.030 DOI: https://doi.org/10.1016/j.cosust.2013.11.030
  29. Mcneely, J., & Schroth, G. (2006). Agroforestry and biodiversity conservation – traditional practices, present dynamics, and lessons for the future. Biodiversity & Conservation, 15, 549-554. https://doi.org/10.1007/s10531-005-2087-3 DOI: https://doi.org/10.1007/s10531-005-2087-3
  30. Mendieta López, M., & Rocha Molina, L. R. (2007). Sistemas agroforestales. Universidad Nacional Agraria.
  31. Mishra, R., & Mishra, Y. (2017). Challenges and strategies to address food and livelihood security in agroforestry. En Montagnini, F. Agroforestry (1a ed.). Springer International Publishing. DOI: https://doi.org/10.1007/978-981-10-7650-3_34
  32. Mohan, M., & Zimmerman, T. (2012). South Asian agroforestry: Traditions, transformations, and prospects. En D. Garrity, Agroforestry—The future of global land use (1a ed., Vol. 19). Springer Netherlands.
  33. Monge, J., & Russo, R. (2009). Agroforestería, sostenibilidad y biodiversidad. Una necesidad para la conservación. Serie Documentos Técnicos No. 2009‐7. Editorial Earth.
  34. Montagnini, F., & Metzel, R. (2017). The contribution of agroforestry to sustainable development Goal 2: End hunger, achieve food security and improved nutrition, and promote sustainable agriculture. En F. Montagnini, Integrating landscapes; agroforestry for biodiversity conservation and food sovereignty. Springer International Publishing AG. DOI: https://doi.org/10.1007/978-3-319-69371-2_2
  35. Montagnini, F., Somarriba, E., Murgueitio, E., Fassola, H., & Eibl, B. (2015). Sistemas agroforestales: Funciones productivas, socioeconómicas y ambientales (1a ed.). CIPAV Serie técnica. Informe técnico/ CATIE; no 402. CIPAV.
  36. Morgan, M., & Zimmerman, T. (2014). Agroforestry in the Caribbean, traditional systems, both sustainable and biodiverse. En D. Nandwani, Sustainable development and biodiversity: Issues, technology and innovation (1a ed., Vol. 2). Springer International Publishing Switzerland. DOI: https://doi.org/10.1007/978-3-319-06904-3_6
  37. Myers, S., Gaffikin, L., Golden, C., Ostfeld, R., Redford, K., Ricketts, T., Turner, W., & Osofsky, S. (2013). Human health impacts of ecosystem alteration. PNAS, 110(47) 18753-18760. https://doi.org/10.1073/pnas.1218656110 DOI: https://doi.org/10.1073/pnas.1218656110
  38. Nair, P. K. R. (2011). Agroforestry systems and environmental quality: Introduction. Journal of Environmental Quality, 40(3), 784-790. https://doi.org/10.2134/jeq2011.0076 DOI: https://doi.org/10.2134/jeq2011.0076
  39. Nath, T. K., Jashimuddin, M., Kamrul Hasan, M., Shahjahan, M., & Pretty, J. (2016). The sustainable intensification of agroforestry in shifting cultivation areas of Bangladesh. Agroforestry Systems, 90(3), 405-416. DOI: https://doi.org/10.1007/s10457-015-9863-1
  40. Nischalke, S. M., Abebe, M., Wondimagegnhu, B. A., Kriesemer, S. K., & Beuchelt, T. (2017). Forgotten forests? Food potential of ancient coffee forests and agroforestry systems in the southwestern Ethiopian mountains, seen through a gender lens. Mountain Research and Development, 37(3), 254-262. https://doi.org/10.1659/MRD-JOURNAL-D-16-00096.1 DOI: https://doi.org/10.1659/MRD-JOURNAL-D-16-00096.1
  41. Norgrove, L., & Beck, J. (2016). Biodiversity function and resilience in tropical agroforestry systems including shifting cultivation. Current Forestry Reports, 2(1), 62-80. https://doi.org/10.1007/s40725-016-0032-1 DOI: https://doi.org/10.1007/s40725-016-0032-1
  42. Nyberg, Y., Wetterlind, J., Jonsson, M., & Öborn, I. (2020). The role of trees and livestock in ecosystem service provision and farm priorities on smallholder farms in the Rift Valley, Kenya. Agricultural Systems, 181, 102815. https://doi.org/10.1016/j.agsy.2020.102815 DOI: https://doi.org/10.1016/j.agsy.2020.102815
  43. Nyong, A. P., Ngankam, T. M., & Felicite, T. L. (2019). Enhancement of resilience to climate variability and change through agroforestry practices in smallholder farming systems in Cameroon. Agroforestry Systems, 94, 687-705. https://doi.org/10.1007/s10457-019-00435-y DOI: https://doi.org/10.1007/s10457-019-00435-y
  44. Core Writing Team, Pachauri, R. K., & Meyer, L. A. (Eds.) Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change.
  45. Paembonan, S., Millang, S., & Umar, A. (2019). Species diversity and carbon storage in agroforestry systems of Toraja highlands, Indonesia. IOP Conference Series: Earth and Environmental Science, 343, 012048. https://doi.org/10.1088/1755-1315/343/1/012048 DOI: https://doi.org/10.1088/1755-1315/343/1/012048
  46. Paolotti, L., Boggia, A., Castellini, C., Rocchi, L., & Rosati, A. (2016). Combining livestock and tree crops to improve sustainability in agriculture: A case study using the LCA approach. Journal of Cleaner Production, 131, 351-363. https://doi.org/10.1016/j.jclepro.2016.05.024 DOI: https://doi.org/10.1016/j.jclepro.2016.05.024
  47. Pavlidis, G., & Tsihrintzis, V. A. (2018). Environmental benefits and control of pollution to surface water and groundwater by agroforestry systems: A review. Water Resources Management, 32(1), 1-29. https://doi.org/10.1007/s11269-017-1805-4 DOI: https://doi.org/10.1007/s11269-017-1805-4
  48. Perfecto, I., & Vandermeer, J. (2008). Biodiversity conservation in tropical agroecosystems. Annals of the New York Academy of Sciences, 1134(1), 173-200. https://doi.org/10.1196/annals.1439.011 DOI: https://doi.org/10.1196/annals.1439.011
  49. Petit-Aldana, J. (1993). Una revisión sobre el concepto de agroforestería. Revista Forestal Latinoamericana, 12(Especial), 7-21.
  50. Porro, R., Miller, R., Tito, M., Donovan, J., Vivan, J., Trancoso, R., Van Kanten, R., Grijalva, J., Ramírez, B., & Gonçalves, A. (2012). Agroforestry in the Amazon Region: A pathway for balancing conservation and development. En P. Nair, & D. Garrity, (Eds.), Agroforestry—The future of global land use (pp. 391-428). Springer Netherlands. DOI: https://doi.org/10.1007/978-94-007-4676-3_20
  51. Quandt, A., Neufeldt, H., & Mccabe, J. (2018). Building livelihood resilience: What role does agroforestry play? Climate and Development, 11(6), 485-500. https://doi.org/10.1080/17565529.2018.1447903 DOI: https://doi.org/10.1080/17565529.2018.1447903
  52. Quinkenstein, A., Freese, D., Böhm, C., Tsonkova, P., & Hüttl, R. (2012). Agroforestry for mine-land reclamation in Germany: Capitalizing on carbon sequestration and bioenergy production. En P. Nair, & D. Garrity (Eds.), Agroforestry—The future of global land. Springer Netherlands. DOI: https://doi.org/10.1007/978-94-007-4676-3_17
  53. Rahman, S. A., Imam, M. H., Snelder, D. J., & Sunderland, T. (2012). Agroforestry for livelihood security in agrarian landscapes of the Padma Floodplain in Bangladesh. Small-Scale Forestry, 11(4), 529-538. https://doi.org/10.1007/s11842-012-9198-y DOI: https://doi.org/10.1007/s11842-012-9198-y
  54. Rosenstock, T., Dawson, I., Aynekulu, E., Chomba, S., Degrande, A., Fornace, K., Jamnadass, R., KImaro, A., Kindt, R., Lamanna, C., Malesu, M., Mausch, K., Mcmullin, S., Murage, P., Namoi, N., Njenga, M., Nyoka, I., & Paez, A. (2019). A planetary health perspective on agroforestry in Sub-Saharan Africa. One Earth, 1(3), 333-344. https://doi.org/10.1016/j.oneear.2019.10.017 DOI: https://doi.org/10.1016/j.oneear.2019.10.017
  55. Roy, M., & Roy, S. (2017). Bioenergy in India: Status, policies and prospects. En F. Montagnini (Eds.), Agroforestry (1a ed.). Springer Singapore. DOI: https://doi.org/10.1007/978-981-10-7650-3_31
  56. Russell, D., & Franzel, S. (2004). Trees of prosperity: Agroforestry, markets and the African smallholder. Agroforestry Systems, 61(1), 345-355. https://doi.org/10.1023/B:AGFO.0000029009.53337.33 DOI: https://doi.org/10.1023/B:AGFO.0000029009.53337.33
  57. Sharma, G., & Sharma, E. (2017). Agroforestry systems as adaptation measures for sustainable livelihoods and socio-economic development in the Sikkim Himalaya. En J. Dagar, & V. Tewari (Eds.), Agroforestry (pp.217-243). Springer, Singapore. https://doi.org/10.1007/978-981-10-7650-3_8 DOI: https://doi.org/10.1007/978-981-10-7650-3_8
  58. Shibu, J., Gold, M., & Garrett, H. (2012). The future of temperate agroforestry in the United States. En P. Nair, & D. Garrity, (Eds.) Agroforestry—The future of global land use (1a ed.). Springer Netherlands.
  59. Sokheang, U., Ratha, C., Suryatmojo, H., Satriagasa, M., Dewi, H., Astuti, H., & Retnoadji, B. (2019). The role of agroforestry system for microarthropods biodiversity at upstream area of Merawu watershed, Banjarnegara District, Indonesia. IOP Conference Series: Earth and Environmental Science, 361, 12036. https://doi.org/10.1088/1755-1315/361/1/012036 DOI: https://doi.org/10.1088/1755-1315/361/1/012036
  60. Somarriba, E. (1998). Diagnóstico y diseño agroforestal. Agroforestería en las Américas, 5, 68-72.
  61. Steffen, W., Richardson, K., Rockström, J., Cornell, S., Fetzer, I., & Bennett, E. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223). https://doi.org/10.1126/science.1259855 DOI: https://doi.org/10.1126/science.1259855
  62. Anderson, S.H, Udawatta, R. P., Seobi, T., & Garrett, H. E. (2009). Soil water content and infiltration in agroforestry buffer strips. Agroforestry Systems, 75, 5-16. https://doi.org/10.1007/s10457-008-9128-3 DOI: https://doi.org/10.1007/s10457-008-9128-3
  63. Swamy, S., & Tewari, V. (2017). Mitigation and adaptation strategies to climate change through agroforestry practices in the tropic. En F. Montagnini, Agroforestry (1a. ed). Springer International Publishing. DOI: https://doi.org/10.1007/978-981-10-7650-3_29
  64. Torquebiau, E. F. (2000). A renewed perspective on agroforestry concepts and classification.
  65. Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie, 323(11), 1009–1017. doi: 10.1016/s0764-4469(00)01239-7 DOI: https://doi.org/10.1016/S0764-4469(00)01239-7
  66. Torralba, M., Fagerholm, N., Burgess, P. J., Moreno, G., & Plieninger, T. (2016). Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems & Environment, 230, 150-161. https://doi.org/10.1016/j.agee.2016.06.002 DOI: https://doi.org/10.1016/j.agee.2016.06.002
  67. Tschora, H., & Cherubini, F. (2020). Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Global Ecology and Conservation, 22, e00919. https://doi.org/10.1016/j.gecco.2020.e00919 DOI: https://doi.org/10.1016/j.gecco.2020.e00919
  68. van Noordwijk, M., Duguma, L. A., Dewi, S., Leimona, B., Catacutan, D. C., Lusiana, B., Öborn, I., Hairiah, K., & Minang, P. A. (2018). SDG synergy between agriculture and forestry in the food, energy, water and income nexus: Reinventing agroforestry? Current Opinion in Environmental Sustainability, 34, 33-42. https://doi.org/10.1016/j.cosust.2018.09.003 DOI: https://doi.org/10.1016/j.cosust.2018.09.003
  69. Waldron, A., Garrity, D., Malhi, Y., Girardin, C., Miller, D., & Seddon, N. (2017). Agroforestry can enhance food security while meeting other sustainable development goals. Tropical Conservation Science, 10, 1-6. https://doi.org/10.1177/1940082917720667 DOI: https://doi.org/10.1177/1940082917720667
  70. Wu, J., Zeng, H., Zhao, F., Chen, C., Liu, W., Yang, B., & Zhang, W. (2020). Recognizing the role of plant species composition in the modification of soil nutrients and water in rubber agroforestry systems. Science of the Total Environment, 723, 138042. https://doi.org/10.1016/j.scitotenv.2020.138042 DOI: https://doi.org/10.1016/j.scitotenv.2020.138042
  71. Zafra, C., Temprano, J., & Tejero, I. (2017). The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: A review. Urban Water Journal, 14(6), 639-649. https://doi.org/10.1080/1573062X.2016.1223320 DOI: https://doi.org/10.1080/1573062X.2016.1223320
  72. Ziyadi, M., Dhabi, A., Aitlhaj, A., Ouahrani, A., Ouahidi, A., & Achtak, H. (2019). Terraced agroforestry systems in West Anti-Atlas (Morocco): Incidence of climate change and prospects for sustainable development. En P. Castro, A. Azul, W. Leal Filho, & U. Azeiteiro, Climate change-resilient agriculture and agroforestry. Climate Change Management (p. 1-9). Springer Cham. https://doi.org/10.1007/978-3-319-75004-0_1 DOI: https://doi.org/10.1007/978-3-319-75004-0_1
  73. Zomer, R., Bossio, D., Trabucco, A., Yuanjie, L., Gupta, D., & Singh, V. (2007). Trees and water: Smallholder agroforestry on irrigated lands in Northern India. International Water Management Institute.