Vol. 26 Núm. 3 (2020): Otoño 2020
Revisiones bibliográficas

Evaluación de la resiliencia ecológica de los bosques tropicales secos: una aproximación multiescalar

Francisco Guerra Martínez
Universidad Nacional Autónoma de México
Biografía
Arturo García Romero
Universidad Nacional Autónoma de México
Biografía
Miguel Angel Martínez Morales
El Colegio de la Frontera Sur
Biografía

Publicado 2020-11-27

Palabras clave

  • recuperación,
  • resistencia,
  • cambio de cobertura y uso del suelo,
  • percepción remota,
  • estructura

Métrica

Resumen

La resiliencia ecológica está integrada por dos componentes: resistencia y recuperación. En áreas de bosque tropical seco (BTS) donde se elimina la vegetación para establecer actividades agrícolas, la resistencia de la vegetación a este disturbio antrópico es irrelevante. Sin embargo, una vez que se abandonan los campos agrícolas, los sitios inician un proceso de recuperación de sus atributos ecológicos. El objetivo de este trabajo es proponer un marco metodológico para la evaluación de la resiliencia ecológica de los BTS mediante la combinación secuencial de la percepción remota y muestreos en campo, considerando el marco conceptual de la resiliencia y la ecología del BTS. Se plantea que la evaluación de la resiliencia ecológica del BTS tenga las siguientes aproximaciones: (1) la primera incluye un análisis de la recuperación de los atributos del BTS (e. g., cobertura, altura) a nivel regional y de paisaje, mediante insumos de percepción remota (e. g., imágenes de satelite) que muestren el cambio de cobertura y uso del suelo; (2) después, el análisis requiere abordar la recuperación desde una perspectiva a nivel local que implica el análisis de las variables ecológicas más relevantes como la estructura, la diversidad y la función ecológica; (3) finalmente, a partir de los insumos a nivel local, es posible retornar a niveles de trabajo menos detallados (e. g., regional y paisaje) y modelar los datos obtenidos en campo mediante índices de vegetación. Este planteamiento permite evaluar la resiliencia ecológica de un ecosistema y las causas que la promueven a diferentes escalas espaciales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Álvarez-Yépiz, J. C., Martínez-Yrízar, A., Búrquez, A., & Lindquist, C. (2008). Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in northwestern Mexico. Forest Ecology and Management, 256(3), 355–366. doi: 10.1016/j.foreco.2008.04.049 DOI: https://doi.org/10.1016/j.foreco.2008.04.049
  2. Arroyo-Rodríguez, V., Melo, F. P. L., Martínez-Ramos, M., Bongers, F., Chazdon, R. L., Meave, J. A., Norden, N., Santos, B. A., Leal, I. R., & Tabarelli, M. (2017a). Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 92(1), 326–340. doi: 10.1111/brv.12231 DOI: https://doi.org/10.1111/brv.12231
  3. Arroyo-Rodríguez, V., Moreno, C. E., & Galán-Acedo, C. (2017b). La ecología del paisaje en México: Logros, desafíos y oportunidades en las ciencias biológicas. Revista Mexicana de Biodiversidad, 88, 42–51. doi: 10.1016/j.rmb.2017.10.004 DOI: https://doi.org/10.1016/j.rmb.2017.10.004
  4. Bakker, W. H., Feringa, W., Gieske, A. S. M., Gorte, B. G. H., Grabmaier, K. A., Hecker, C. A., Horn, J. A., Huurneman, G. C., Janssen, L. L. F., Kerle, N., Meer, F. D., Parodi, G. N., Pohl, C., Reeves, C. V., Ruitenbeek, F. J. V., Schetselaar, E. M., Tempfli, K., Weir, M. J. C., Westinga, E., & Woldai, T. (2009). Principles of remote sensing: an introductory textbook. (K. Tempfli, N. Kerle, G. C. Huurneman, & L. L. F. Janssen, Eds.). Enschede, The Netherlands: ITC Educational Textbook Series.
  5. Baskin, C. C., & Baskin, J. M. (1998). Seeds : ecology, biogeography, and evolution of dormancy and germination. Academic Press. DOI: https://doi.org/10.1017/CBO9780511525445.004
  6. Beard, J. S. (1955). The classification of tropical American vegetation-types. Ecology, 36(1), 89–100. doi: 10.2307/1931434 DOI: https://doi.org/10.2307/1931434
  7. Bullock, S. H. (1995). Plant reproduction in neotropical dry forests. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonally Dry Tropical Forests: (pp. 277–303). Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511753398.011 DOI: https://doi.org/10.1017/CBO9780511753398.011
  8. Bullock, S. H., Mooney, H. A., & Medina, E. (1995). Seasonally dry tropical forest. (S. H. Bullock, H. A. Mooney, & E. Medina, Eds.). Cambridge, UK: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511753398
  9. Carpenter, S. R., Kraft, C. E., Wright, R., He, X., Soranno, P. A., & Hodgson, J. R. (1992). Resilience and resistance of a lake phosphorus cycle before and after food web manipulation. The American Naturalist, 140(5), 781–798. doi: 10.1086/285440 DOI: https://doi.org/10.1086/285440
  10. Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: resilience of what to what? Ecosystems, 4(8), 765–781. doi: 10.1007/s10021-001-0045-9 DOI: https://doi.org/10.1007/s10021-001-0045-9
  11. Ceccon, E., Huante, P., & Rincón, E. (2006). Abiotic factors influencing tropical dry forests regeneration. Brazilian Archives of Biology and Technology, 49(2), 305–312. doi: 10.1590/S1516-89132006000300016 DOI: https://doi.org/10.1590/S1516-89132006000300016
  12. Chazdon, R. L. (2014). Second Growth: the promise of tropical forest regeneration in an age of deforestation. Yokohama, Japan: University of Chicago Press. Recuperado de https://books.google.com.mx/books?id=buJcngEACAAJ DOI: https://doi.org/10.7208/chicago/9780226118109.001.0001
  13. Chazdon, R. L., Letcher, S. G., van Breugel, M., Martínez-Ramos, M., Bongers, F., & Finegan, B. (2007). Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1478), 273–89. doi: 10.1098/rstb.2006.1990 DOI: https://doi.org/10.1098/rstb.2006.1990
  14. Chazdon, R. L., Peres, C. A., Dent, D., Sheil, D., Lugo, A. E., Lamb, D., Stork, N. E., Miller, S. E. (2009). The potential for species conservation in tropical secondary forests. Conservation Biology, 23(6), 1406–1417. doi: 10.1111/j.1523-1739.2009.01338.x DOI: https://doi.org/10.1111/j.1523-1739.2009.01338.x
  15. Clements, F. E. (1916). Plant succession. Washington, D.C., Estados Unidos: Carnegie Institute Washington Publication 242.
  16. Connell, J. H. & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 111(982): 1119-1144. https://www.jstor.org/stable/2460259 DOI: https://doi.org/10.1086/283241
  17. De Keersmaecker, W., Lhermitte, S., Tits, L., Honnay, O., Somers, B., & Coppin, P. (2015). A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Global Ecology and Biogeography, 24, 539–548. doi: 10.1111/geb.12279 DOI: https://doi.org/10.1111/geb.12279
  18. Del Castillo, R. F. (2015). A conceptual framework to describe the ecology of fragmented landscapes and implications for conservation and management. Ecological Applications, 25(6), 1447–1455. doi: 10.1890/14-1964.1 DOI: https://doi.org/10.1890/14-1964.1
  19. Derroire, G. (2016). Secondary succession in tropical dry forests. drivers and mechanisms of forest regeneration. Bangor University, Reino Unido.
  20. Dirzo, R., Young, S. H., Mooney, H. A., & Ceballos, G. (Eds.). (2011). Seasonally dry tropical forests: ecology and conservation. Washington, DC, USA: Island Press. DOI: https://doi.org/10.5822/978-1-61091-021-7
  21. Dupuy, J. M. J., Hernández-Stefanoni, J. L., Hernández-Juárez, R. A., Tetetla-Rangel, E., López-Martínez, J. O., Leyequién-Abarca, E., Tun-Dzul, F. J., & May-Pat, F. (2012). Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica, 44(2), 1–12. doi: 10.1111/j.1744-7429.2011.00783.x DOI: https://doi.org/10.1111/j.1744-7429.2011.00783.x
  22. Fahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40(9), 1649–1663. doi: 10.1111/jbi.12130 DOI: https://doi.org/10.1111/jbi.12130
  23. Frankie, G. W., Baker, H. G., & Opler, P. A. (1974). Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. The Journal of Ecology, 62(3), 881. doi: 10.2307/2258961 DOI: https://doi.org/10.2307/2258961
  24. Furley, P. A., Proctor, J., & Ratter, J. A. (Eds.). (1992). Nature and dynamics of forest–savanna boundaries. London: Chapman and Hall.
  25. Galicia, L., Zarco-Arista, A. E., Mendoza-Robles, K. I., Palacio-Prieto, J. L., & García-Romero, A. (2008). Land use/cover, landforms and fragmentation patterns in a tropical dry forest in the southern Pacific region of Mexico. Singapore Journal of Tropical Geography, 29, 137–154. doi: 10.1111/j.1467-9493.2008.00326.x DOI: https://doi.org/10.1111/j.1467-9493.2008.00326.x
  26. Gallardo-Cruz, J. A., Meave, J. A., González, E. J., Lebrija-Trejos, E. E., Romero-Romero, M. A., Pérez-García, E. A., Gallardo-Cruz, R., Hernández-Stefanoni, J. L., & Martorell, C. (2012). Predicting tropical dry forest successional attributes from space: Is the key hidden in image texture? PLoS ONE, 7(2), 38–45. doi: 10.1371/journal.pone.0030506 DOI: https://doi.org/10.1371/journal.pone.0030506
  27. Garwood, N. C. (1983). Seed germination in a seasonal tropical forest in Panama: a community study. Ecological Monographs, 53(2), 159–181. doi: 10.2307/1942493 DOI: https://doi.org/10.2307/1942493
  28. Gentry, H. S. (1942). Río Mayo plants: a study of the flora and vegetation of the valley of the Río Mayo, Sonora. Washington, DC: Carnegie Institution of Washington.
  29. Gleason, H. A. (1939). The individualistic concept of the plant succession. The American Midland Naturalist, 21:92-110. https://doi.org/10.1177/030913339602000205 DOI: https://doi.org/10.2307/2420377
  30. Glenn-Lewin, D. C., Peet, R. K. & Veblen, T. T. (1992). Plant Sucesión: Theory and Prediction. London, UK: Champman and Hall.
  31. Grimm, V., & Wissel, C. (1997). Babel, or the ecological stability discussions: An inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109(3), 323–334. doi: 10.1007/s004420050090 DOI: https://doi.org/10.1007/s004420050090
  32. Griz, L. M. S., & Machado, I. C. S. (2001). Fruiting phenology and seed dispersal syndromes in caatinga, a tropical dry forest in the northeast of Brazil. Journal of Tropical Ecology, 17(02), 303–321. doi: 10.1017/S0266467401001201 DOI: https://doi.org/10.1017/S0266467401001201
  33. Guerra‐Martínez, F., García‐Romero, A., Cruz‐Mendoza, A., & Osorio‐Olvera, L. (2019). Regional analysis of indirect factors affecting the recovery, degradation and deforestation in the tropical dry forests of Oaxaca, Mexico. Singapore Journal of Tropical Geography, 40(3), 387–409. doi: 10.1111/sjtg.12281 DOI: https://doi.org/10.1111/sjtg.12281
  34. Gunderson, L. H. (2000). Ecological resilience—In theory and application. Annual Review of Ecology and Systematics, 31(1), 425–439. doi: 10.1146/annurev.ecolsys.31.1.425 DOI: https://doi.org/10.1146/annurev.ecolsys.31.1.425
  35. Hecht, S. B., Kandel, S., Gomes, I., Cuellar, N., & Rosa, H. (2006). Globalization, forest resurgence, and environmental politics in El Salvador. World Development, 34(2), 308–323. doi: 10.1016/j.worlddev.2005.09.005 DOI: https://doi.org/10.1016/j.worlddev.2005.09.005
  36. Hernández-Stefanoni, J. L., Dupuy, J. M., Tun-Dzul, F., & May-Pat, F. (2011). Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landscape Ecology, 26(3), 355–370. doi: 10.1007/s10980-010-9561-3 DOI: https://doi.org/10.1007/s10980-010-9561-3
  37. Hernández-Stefanoni, J. L., Johnson, K. D., Cook, B. D., Dupuy, J. M., Birdsey, R., Peduzzi, A., & Tun-Dzul, F. (2015). Estimating species richness and biomass of tropical dry forests using LIDAR during leaf-on and leaf-off canopy conditions. Applied Vegetation Science, 18(4), 724–732. doi: 10.1111/avsc.12190 DOI: https://doi.org/10.1111/avsc.12190
  38. Hirota, M., Holmgren, M., Van Nes, E. H., & Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334(6053), 232–235. doi: 10.1126/science.1210657 DOI: https://doi.org/10.1126/science.1210657
  39. Hodgson, D., McDonald, J. L., & Hosken, D. J. (2015). What do you mean, “resilient”? Trends in Ecology and Evolution, 30(9), 503–506. doi: 10.1016/j.tree.2015.06.010 DOI: https://doi.org/10.1016/j.tree.2015.06.010
  40. Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105(2727), 367–368. doi: 10.1126/science.105.2727.367 DOI: https://doi.org/10.1126/science.105.2727.367
  41. Holdridge, L. R. (1967). Life zone ecology. doi: Via 10.1046/j.1365-2699.1999.00329.x
  42. Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1–23. doi: 10.1146/annurev.es.04.110173.000245 DOI: https://doi.org/10.1146/annurev.es.04.110173.000245
  43. International institute for geo-information science and Earth observation [ITC]. (2019). ITC satellites and sensors database. Revisado Febrero 20, 2019, Recuperado de https://webapps.itc.utwente.nl/sensor/default.aspx?view=searchsat
  44. Jackson, H. B., & Fahrig, L. (2012). What size is a biologically relevant landscape? Landscape Ecology, 27(7), 929–941. doi: 10.1007/s10980-012-9757-9 DOI: https://doi.org/10.1007/s10980-012-9757-9
  45. Janzen, D. H. (1967). Synchronization of sexual reproduction of trees within the dry season in Central America. Evolution, 21(3), 620. doi: 10.2307/2406621 DOI: https://doi.org/10.2307/2406621
  46. Janzen, D. H. (1988). Tropical dry forests. In Biodiversity (pp. 130–137). Washington, DC: National Academy Press.
  47. Jaramillo, V. J., Kauffman, J. B., Rentería-Rodríguez, L., Cummings, D. L., & Ellingson, L. J. (2003). Biomass, carbon, and nitrogen pools in mexican tropical dry forest landscapes. Ecosystems, 6(7), 609–629. doi: 10.1007/s10021-002-0195-4 DOI: https://doi.org/10.1007/s10021-002-0195-4
  48. Johnson, E. A., & Miyanishi, K. (2008). Testing the assumptions of chronosequences in succession. Ecology Letters, 11(5), 419–431. doi: 10.1111/j.1461-0248.2008.01173.x DOI: https://doi.org/10.1111/j.1461-0248.2008.01173.x
  49. Justiniano, M. J., & Fredericksen, T. S. (2000). Phenology of tree species in Bolivian dry forests. Biotropica, 32(2), 276–281. doi: 10.2307/2663856 DOI: https://doi.org/10.1111/j.1744-7429.2000.tb00470.x
  50. Kareiva, P., Watts, S., McDonald, R., & Boucher, T. (2007). Domesticated nature: shaping landscapes and ecosystems for human welfare. Science, 316(5833), 1866–1869. doi: 10.1126/science.1140170 DOI: https://doi.org/10.1126/science.1140170
  51. Kaufman, L. H. (1982). Stream aufwuchs accumulation: disturbance frequency and stress resistance and resilience. Oecologia, 52(1), 57–63. doi: 10.1007/BF00349012 DOI: https://doi.org/10.1007/BF00349012
  52. Kennard, D. K. (2002). Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. Journal of Tropical Ecology, 18(01), 53–66. doi: 10.1017/S0266467402002031 DOI: https://doi.org/10.1017/S0266467402002031
  53. Lebrija-Trejos, E., Bongers, F., Pérez-García, E. A., & Meave, J. A. (2008). Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica, 40(4), 422–431. doi: 10.1111/j.1744-7429.2008.00398.x DOI: https://doi.org/10.1111/j.1744-7429.2008.00398.x
  54. Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L., & Bongers, F. (2011). Environmental changes during secondary succession in a tropical dry forest in Mexico. Journal of Tropical Ecology, 27, 477–489. doi: 10.1017/S0266467411000253 DOI: https://doi.org/10.1017/S0266467411000253
  55. Lebrija-Trejos, E., Meave, J. A., Poorter, L., Pérez-García, E. A., & Bongers, F. (2010a). Pathways , mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 12, 267–275. doi: 10.1016/j.ppees.2010.09.002 DOI: https://doi.org/10.1016/j.ppees.2010.09.002
  56. Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Bongers, F., & Poorter, L. (2010b). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91(2), 386–398. https://doi.org/10.1890/08-1449. DOI: https://doi.org/10.1890/08-1449.1
  57. Leopold, A. S. (1950). Vegetation zones of Mexico. Ecology, 31(4), 507–518. doi: 10.2307/1931569 DOI: https://doi.org/10.2307/1931569
  58. Letcher, S. G., & Chazdon, R. L. (2009). Rapid recovey of biomass, species richness and species composition in a forest chronosequence in Northeastern Costa Rica. Biotropica, 41(5), 608–617. doi: 10.1111/j.1744-7429.2009.00517.x DOI: https://doi.org/10.1111/j.1744-7429.2009.00517.x
  59. Lloret, F., Keeling, E. G., & Sala, A. (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120(12), 1909–1920. doi: 10.1111/j.1600-0706.2011.19372.x DOI: https://doi.org/10.1111/j.1600-0706.2011.19372.x
  60. López-Jiménez, L. N., Durán-García, R., & Dupuy-Rada, J. M. (2019). Recuperación de la estructura, diversidad y composición en una selva mediana subperennifolia en Yucatán, México. Madera y Bosques, 25(1), 1–17. doi: 10.21829/myb.2019.2511587 DOI: https://doi.org/10.21829/myb.2019.2511587
  61. Maass, J. M. (1995). Conversion of tropical dry forest to pasture and agriculture. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonally Dry Tropical Forests (pp. 399–422). Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511753398.017 DOI: https://doi.org/10.1017/CBO9780511753398.017
  62. Maass, M., & Burgos, A. (2011). Water dynamics at the ecosystem level in seasonally dry tropical forests. In R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally dry tropical forests: ecology and conservation (pp. 141–156). Washington, USA: Island Press. doi: 10.5822/978-1-61091-021-7_9 DOI: https://doi.org/10.5822/978-1-61091-021-7_9
  63. MacGillivray, C. W., & Grime, J. P. (1995). Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Functional Ecology, 9(4), 640. doi: 10.2307/2390156 DOI: https://doi.org/10.2307/2390156
  64. Martínez-Yrízar, A., Búrquez, A., & Maass, M. (2000). Structure and functioning of tropical deciduous forest in western México. In R. H. Robichaux y D. Yetman (Eds.), The tropical deciduous forest of Alamos: biodiversity of a threatened ecosystem in Mexico (pp. 19–35). Tucson, USA: University of Arizona Press.
  65. Maza-Villalobos, S., Balvanera, P., & Martínez-Ramos, M. (2011). Early regeneration of tropical dry forest from Abandoned Pastures: Contrasting chronosequence and dynamic approaches. Biotropica, 43(6), 666–675. doi: 10.1111/j.1744-7429.2011.00755.x DOI: https://doi.org/10.1111/j.1744-7429.2011.00755.x
  66. Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S., Kapos, V., & Gordon, J. E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491–505. doi: 10.1111/j.1365-2699.2005.01424.x DOI: https://doi.org/10.1111/j.1365-2699.2005.01424.x
  67. Miranda, F., & Hernández, X. E. (1963). Los tipos de vegetación de México y su clasificación. Boletín de La Sociedad Botánica de México, 28, 29–179. Recuperado de http://www.botanicalsciences.com.mx/index.php/botanicalSciences/article/view/1084 DOI: https://doi.org/10.17129/botsci.1084
  68. Mooney, H. A. (2011). Synthesis and promising lines of research on seasonally dry tropical forests. In R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally dry tropical forests: ecology and conservation (pp. 301–306). Washington, USA: Island Press/Center for Resource Economics. doi: 10.5822/978-1-61091-021-7_17 DOI: https://doi.org/10.5822/978-1-61091-021-7_17
  69. Mooney, H. A., Bullock, S. H., & Medina, E. (1995). Introduction. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonally dry tropical forests (pp. 1–8). Cambridge, UK: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511753398.001
  70. Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17(1), 67–88. doi: 10.1146/annurev.es.17.110186.000435 DOI: https://doi.org/10.1146/annurev.es.17.110186.000435
  71. Murphy, P. G., & Lugo, A. E. (1995). Dry forests of Central America and the Caribbean. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonally dry tropical forests: (pp. 9–34). Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511753398.002 DOI: https://doi.org/10.1017/CBO9780511753398.002
  72. Myers-Smith, I. H., Trefry, S. A., & Swarbrick, V. J. (2012). Resilience: easy to use but hard to define. Ideas in Ecology and Evolution, 5(1), 44–53. doi: 10.4033/iee.2012.5.11.c DOI: https://doi.org/10.4033/iee.2012.5.11.c
  73. Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (2010). Global Forest Resources Assessment. FAO Forestry Paper 163.
  74. Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (2015). Global Forest Resources Assessment 2015. Desk reference. Desk Reference. doi: 10.1002/2014GB005021 DOI: https://doi.org/10.1002/2014GB005021
  75. Pickett, S. T. A., Collins S. L. & Armesto, J. J. (1987). A hierarchical consideration of causes and mechanisms of succession. Vegetatio, 69: 109-114. doi: 10.1007/BF00038691 DOI: https://doi.org/10.1007/978-94-009-4061-1_10
  76. Pickett, S. T. A. (1989). Space-for-time substitution as an alternative to long-term studies. Long-Term Studies in Ecology. New York, USA: Springer New York. doi: 10.1007/978-1-4615-7358-6_5 DOI: https://doi.org/10.1007/978-1-4615-7358-6_5
  77. Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307(26), 321–326. doi: 10.1038/315635c0 DOI: https://doi.org/10.1038/307321a0
  78. Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Craven, D., de Almeida-Cortez, J. S., Cabral, G. A. L., de Jong, B. H. J., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., Espírito-Santo, M. M., Fandino, M. C., César, R. G., Hall, J. S., Hernandez-Stefanoni, J. L., Jakovac, C. C., Junqueira, A. B., Kennard, D., Letcher, S. G., Licona, J.-C., Lohbeck, M., Marín-Spiotta, E., Martínez-Ramos, M., Massoca, P., Meave, J. A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y. R. F., Ochoa-Gaona, S., de Oliveira, A. A., Orihuela-Belmonte, E., Peña-Claros, M., Pérez-García, E. A., Piotto, D., Powers, J. S., Rodríguez-Velázquez, J., Romero-Pérez, I. E., Ruíz, J., Saldarriaga, J. G., Sanchez-Azofeifa, A., Schwartz, N. B., Steininger, M. K., Swenson, N. G., Toledo, M., Uriarte, M., van Breugel, M., van der Wal, H., Veloso, M. D. M., Vester, H. F. M., Vicentini, A., Vieira, I. C. G., Vizcarra, T. B., Williamson, G. B., & Rozendaal, D. M. A. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530(7589), 211–214. doi: 10.1038/nature16512 DOI: https://doi.org/10.1038/nature16512
  79. Powers, J. S., Becknell, J. M., Irving, J., & Pérez-Aviles, D. (2009). Diversity and structure of regenerating tropical dry forests in Costa Rica: geographic patterns and environmental drivers. Forest Ecology and Management, 258(6), 959–970. doi: 10.1016/j.foreco.2008.10.036 DOI: https://doi.org/10.1016/j.foreco.2008.10.036
  80. Romero-Duque, L. P., Jaramillo, V. J., & Pérez-Jiménez, A. (2007). Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land-use history. Forest Ecology and Management, 253(1–3), 38–47. doi: 10.1016/j.foreco.2007.07.002 DOI: https://doi.org/10.1016/j.foreco.2007.07.002
  81. Rykiel, J. E. J. (1985). Towards a definition of ecological disturbance. Australian Journal of Ecology, 10, 361–365. doi: 10.1111/j.1442-9993.1985.tb00897.x DOI: https://doi.org/10.1111/j.1442-9993.1985.tb00897.x
  82. Rzedowski, J. (2006). Vegetación de México (1a Edición). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, D. F.
  83. Sánchez-Azofeifa, G. A., & Portillo-Quintero, C. (2011). Extent and drivers of change of neotropical seasonally dry tropical forests. In R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally dry tropical forests: ecology and conservation (pp. 45–57). Washington, USA: Island Press. doi: 10.5822/978-1-61091-021-7 DOI: https://doi.org/10.5822/978-1-61091-021-7_3
  84. Sánchez-Azofeifa, G. A., Quesada, M., Rodríguez, J. P., Nassar, J. M., Stoner, K. E., Castillo, A., Garvin, T., Zent, E. L., Calvo-Alvarado, J, C., Kalacska, M. E. R., Fajardo, L., Gamon, J. A. & Cuevas-Reyes, P. (2005). Research priorities for neotropical dry forests. Biotropica, 37(4), 477–485. doi: 10.1111/j.1744-7429.2005.00066.x DOI: https://doi.org/10.1046/j.0950-091x.2001.00153.x-i1
  85. Scheffer, M., Carpenter, S. R., Dakos, V., & van Nes, E. H. (2015). Generic indicators of ecological resilience: inferring the chance of a critical transition. Annual Review of Ecology, Evolution, and Systematics, 46(1), 145–167. doi: 10.1146/annurev-ecolsys-112414-054242 DOI: https://doi.org/10.1146/annurev-ecolsys-112414-054242
  86. Sheil, D., Nasi, R., & Johnson, B. (2004). Ecological criteria and indicators for tropical forest landscapes: Challenges in the search for progress. Ecology and Society, 9(2), 7–12. Recuperado de http://hdl.handle.net/10568/18918 DOI: https://doi.org/10.5751/ES-00638-090107
  87. Singh, J. S., & Singh, V. K. (1992). Phenology of seasonally dry tropical forest. Current Science, 63(11), 684–689. Recuperado de https://www.jstor.org/stable/24094777
  88. Townsend, C. R. (2008). Ecological applications: toward a sustainable world. Wiley-Blackwell.
  89. Trejo, I., & Dirzo, R. (2002). Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity and Conservation, 11, 2063–2084. doi: 10.1023/A:1020876316013 DOI: https://doi.org/10.1023/A:1020876316013
  90. Vesk, P. A., & Westoby, M. (2004). Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology, 92(2), 310–320. doi: 10.1111/j.0022-0477.2004.00871.x DOI: https://doi.org/10.1111/j.0022-0477.2004.00871.x
  91. Vieira, D. L. M., & Scariot, A. (2006). Principles of natural regeneration of Tropical Dry Forests for regeneration. Restoration Ecology, 14(1), 11–20. doi: 10.1111/j.1526-100X.2006.00100.x DOI: https://doi.org/10.1111/j.1526-100X.2006.00100.x
  92. Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499. doi: 10.1126/science.277.5325.494 DOI: https://doi.org/10.1126/science.277.5325.494
  93. Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability and transformability in social – ecological systems. Ecology and Society, 9(2), 5. doi: 10.1103/PhysRevLett.95.258101 DOI: https://doi.org/10.5751/ES-00650-090205
  94. White, P. S., & Pickett, S. T. A. (1985). Natural disturbance and patch dynamics: an introduction. In The Ecology of Natural Disturbance and Patch Dynamics (pp. 3–13). Academic Press, Inc. doi: 10.1016/B978-0-12-554520-4.50006-X DOI: https://doi.org/10.1016/B978-0-08-050495-7.50006-5
  95. Wortley, L., Hero, J.-M., & Howes, M. (2013). Evaluating ecological restoration success: a review of the literature. Restoration Ecology, 21(5), 537–543. doi: 10.1111/rec.12028 DOI: https://doi.org/10.1111/rec.12028
  96. Wright, S. J., & Muller-Landau, H. C. (2006). The future of tropical forest species. Biotropica, 38(3), 287–301. doi: 10.1111/j.1744-7429.2006.00154.x DOI: https://doi.org/10.1111/j.1744-7429.2006.00154.x