Vol. 23 Núm. 2 (2017): Verano
Artículos Científicos

Durabilidad natural y estabilidad dimensional de mora blanca (Morus alba L.) para laúdes del Medio Oriente

Aida Se Golpayegani
Freelance researcher Formerly: Laboratoire de Mécanique et Génie Civil (LMGC), CNRS UMR5508, Université Montpellier 2, cc 048, Place E. Bataillon, 34095 Montpellier cedex 5, France
Marie-France THEVENON
Iris Bremaud
University of Montpelleir II
Kambiz Pourtahmasi
Tehran University
Joseph Gril
University of Montpellier II

Publicado 2017-09-30

Palabras clave

  • dimensional stability,
  • musical instruments,
  • natural durability,
  • Reticulitermes flavipes (ex.santonensis),
  • water leaching,
  • white mulberry (Morus alba L.)
  • ...Más
  • estabilidad dimensional,
  • instrumentos musicales,
  • durabilidad natural,
  • Reticulitermes flavipes (ex.santonensis),
  • filtración de agua,
  • morera blanca (Morus alba L.)
  • ...Más


Los fabricantes de instrumentos musicales (lauderos) prefieren madera de especies que no solo tengan excelentes propiedades acústicas, sino que además tiendan a mantener su estado natural durante su fabricación y pretratamientos. En este estudio se hicieron pruebas de inmersión en agua, un protocolo común entre los lauderos iraníes, para determinar la durabilidad natural y estabilidad dimensional de la madera de mora blanca (Morus alba L.). La madera de esta especie, la cual es la única que ha utilizado para la fabricación de los laúdes iraníes por más de un siglo, fue probada para determinar su resistencia natural al ataque de hongos y termitas. Los especímenes fueron estudiados para detectar cambios en sus dimensiones durante cuatro meses de inmersión en agua. La madera en estudio, lixiviada o no, mostró muy alta resistencia tanto al ataque de hongos como al de termitas. La remoción gradual de extractivos durante la inmersión resultó en un incremento en la contracción parcial. Se concluyó que, aun cuando la lixiviación en agua no afecta la durabilidad natural, tiende a reducir la estabilidad dimensional de la madera de mora blanca.


  1. Brémaud, I., Amusant, N., Minato, K., Gril, J. and Thibaut, B. (2011). Effect of extractives on vibrational properties of African Padauk (Pterocarpus soyauxii Taub.). Wood Science and Technology, 45(3), 461-472. doi: 10.1007/s00226-010-0337-3.
  2. Bucur, V. (2006). Acoustics of wood. Boca Raton, USA: Springer. doi: 10.1007/3-540-30594-7.
  3. Chafe, S. C. (1987). Collapse, volumetric shrinkage, specific gravity and extractives in Eucalyptus and other species. Wood Science and Technology, 20(4), 27-41. doi: 10.1007/BF00349715
  4. Clausen, C. A. (2010). Wood handbook—Wood as an engineering material. (General Technical Report FPL-GTR-190). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. doi: 10.2737/FPLGTR-190.
  5. EN 117. (2013). Wood preservatives - Determination of toxic values against European Reticulitermes species (European species) (Laboratory method).
  6. EN 84. (1997). Wood preservatives - Accelerated ageing tests of treated wood prior to biological testing – Leaching procedure.
  7. Evans, F., Flate, P. O. and Alfredsen, G. (2008). Natural durability of different wood species in above ground, The International Research Group on Wood Protection, IRG/WP 08-10667, 14 pp. doi: 10.5552/drind.2013.1221.
  8. Glass, S. V. and Zelinka, S. L. (2010). Moisture relation and physical properties of wood. In FPL, USDA Forest Service. Wood handbook: wood as an engineering material. Madison, WI: Forest Products Laboratory, United States Department of Agriculture Forest Service.
  9. Gunduz, G., Korkut, S. and Korkut, D. S. (2008). The effects of heat treatment on physical and technological properties and surface roughness of Camiyan Black Pine (Pinus nigraArn. subsp. Pallasiana var. pallasiana ) wood, Bioresource Technoly, 99(7), 2275-2280.
  10. Haupt, M., Leithoff, H., Meier, D., Puls, J., Richter, H.G. and Faix, O. (2003). Heartwood extractives and natural durability of plantation-grown teakwood (Tectona grandis L.)-a case study. European Journal of Wood and Wood Products, 61(6), 473-474. doi: 10.1007/s00107-0030428-z.
  11. Hernandez, R. E. (2007). Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density and interlocked grain. Wood and Fiber Science, 39, 132-145.
  12. Highly, T. L. (1995). Comparative durability of untreated wood in use above ground. International Biodeterioration and Biodegradation, 35, 409-419. doi: 10.1016/09648305(95)00063-1.
  13. Hillis, W. E. (1962). Wood Extractives and their Significance to the Pulp and Paper Industry. New York, US: Academic press.
  14. Hillis, W. E. (1978). Extractives. Special paper, 8th World forestry congress. Djakarta. WORLD BANK. Forestry sector policy paper. World Bank, Washington, D.C.
  15. Hillis, W. E. (1984). High temperature and chemical effects on wood stability. Part 1: General considerations. Wood Science and Technology. 18, 281-293. doi: 10.1007/ BF00353364.
  16. Hinterstoisser, B., Stefke, B., and Schwanninger, M. (2000). Wood: Raw material source of Energy for the future. Lignovisionen, 2, 29-36.
  17. Li, X. J., Cai, Z. Y., Mou, Q., Wu, Y. and Liu, Y. (2011). Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga Menziesii) Wood, Advanced Materials Research, 197-198, 90-95.
  18. Mankowski, M., Hassan, B., Bishell, A. and Kirker, G. (May 2016). Laboratory evaluations of woods from Pakistan and their extractives against Postia placenta and Trametes versicolor. Paper presented at the 47th IRG Annual Meeting. Lisbon, Portugal.
  19. Mankowski, M., Boyd, B., Hassan, B. and Grant T. K. G. (May 2016). GC-MS Characterizations of termiticidal heart-wood extractives from wood species utilized in Pakistan. Paper presented at the 47th IRG Annual Meeting. Lisbon, Portugal.
  20. Matsunaga, M., Minato, K. and Nakatsubo, F. (1999). Vibrational properties changes of spruce wood by impregnation with water soluble extractives of pernambuco (Guilandina echinata Spreng.). Journal of Wood Science, 45, 470-474. doi: 10.1007/BF00538955.
  21. Mburu, F., Dumarçay, S., Huber, F., Petrissans, M. and Gérardin, P. (2007). Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: Characterization of physicochemical properties and improvement of bio-resistance. Bioresource Technology, 98, 3478-3486. doi:10.1016/j.biortech.2006.11.006.
  22. Militz, H. (1993). Treatment of timber with water soluble dimethylol resins to improve their dimensional stability and durability. Wood Science and Technology, 27, 347355. doi: 10.1007/BF00192221.
  23. Obataya, E., Higashihara, T. and Tomita, B. (2002). Hygroscopicity of heat-treated wood III: Effect of steaming on the hygroscopicity of wood. Mokuzai Gakkaishi, 48(5), 348-355.
  24. Obataya, E. (2010). Effects of ageing and heating on the mechanical properties of wood. In L. Uzielli (Ed.). Wood science for conservation of cultural heritage. Proceeding of the International Conference COST ACTION IE0601 in Florence (pp. 16–22). Florence: Firenze University Press.
  25. Ohmae, K., Norimoto, M. and Minato, K. (1997). Dimensional change of wood by chemical treatment. Bulletin of the Wood Research Institute, 84, 42-45.
  26. Rowell, R. M. and Youngs, R. L. (1980). Dimensional stabilization of wood in use (Research Note FPL-0243). Oxford, England: USDA Forest Products Laboratory.
  27. Rowell, R. M. (1984). The chemistry of solid wood. Washington D.C., US: American Chemical Society.
  28. Rowell, R. M. and Banks, W. B. (1985). Water repellency and dimensional stability of wood (USDA Forest Service general technical report, FPL 50), Madison, Wisconsin: USDA Forest Products Laboratory.
  29. Sadler, R. L., Sharpe, M., Panduranga, R. and Shivakumar, K. (2009). Water immersion effect on swelling and compression properties of Eco-Core, PVC foam and balsa wood. Composite Structures, 90(3), 330-336. doi: 10.1016/j. compstruct.2009.03.016.
  30. Sakai, K., Matsunaga, M., Minao, K. and Nakatsubo, F. (1999). Effect of impregnation of simple phenolics and natural polycyclic compounds on physical properties of wood. Journal of wood Science, 45, 227-232. doi: 10.1007/ BF01177730.
  31. Scheffer, T. and Morrell, J. (1998). Natural durability of wood: a worldwide checklist of species. Retrieved from http://hdl.handle.net/1957/7736
  32. Se Golpayegani, A., Brémaud, I., Gril, J., Thévenon, M-F., Arnould, O. and Pourtahmasi, K. (2012). Effect of extractions on dynamic mechanical properties of white mulberry (Morus alba L.). Journal of wood Science, 58(2), 153-162. doi: 10.1007/s10086-011-1225-7.
  33. Se Golpayegani, A., Thevenon, M-F., Gril, J., Masson, E. and Pourtahmasi, K. (2014). Toxicity potential in extraneous compounds of white mulberry wood. Maderas, Ciencia y tecnología, 16(2), 227-238. doi: 10.4067/S0718221X2014005000018.
  34. Se Golpayegani, A., Brémaud, I., Gril, J., Thévenon, M-F. and Pourtahmasi, K. (2015). The effect of traditional hygrothermal pretreatments on the final acoustical characteristics of white mulberry wood (Morus alba). Maderas, Ciencia y tecnología, 17(4), 821-832. doi: 10.4067/ S0718-221X2015005000071.
  35. Stamm, A. J. and Loughborough, W. K. (1942). Variation in shrinking and swelling of wood. Transactions of the American Society of Mechanical Engineering, 64, 379386.
  36. Walker, J. C. F. (1993). Primary Wood Processing. Principles and Practice. London., UK: Chapman and Hall.
  37. Wegst, U. G. K. (2006). Wood for sound. American Journal of Botany, 93(10), 1439-1448. doi: 10.3732/ajb.93.10.1439.
  38. Wegst, U. G. K. (2008). Bamboo and wood in musical instruments. Annual Review in Materials Research, 38, 323349. doi: 10.1146/annurev.matsci.38.060407.132459.
  39. Windeisen, E., Wegener, G. Lesnino, G. and Schumacher, P. (2002). Investigation of the correlation between extractives content and natural durability in 20 cultivated larch trees. European Journal of Wood and Wood Products, 60(5), 373-374. doi: 10.1007/s00107-002-0314-0.
  40. XP CEN/TS 15083-1. (2006). Durability of wood and wood based products. Determination of solid wood durability against wood destroying fungi Test methods. Part 1: Basidiomycetes.
  41. Zamir, K. (2008). Feeding preferences of Microcerotermes championi (Snyder) on different timbers dried at different temperature under choice and no choice trials. Retrieved from http://hdl.handle.net/10101/npre.2008.2048.1