Vol. 20 Núm. 2 (2014)
Artículos Científicos

Correlation between chemical compounds and mechanical response in culms of two different ages of Guadua angustifolia Kunth

Luz Adriana Sánchez-Echeverri
Universidad de Ibagué
Giovanna Aita
Louisiana State University
Diana Robert
Louisiana State University
Mario Enrique Rodríguez-García
Universidad Nacional Autónoma de México

Publicado 2014-08-31

Palabras clave

  • bamboo culms,
  • Chemical composition,
  • Fiber Content,
  • Modulus of Rupture,
  • Mechanical properties
  • tallos de bambú,
  • composición química,
  • contenido de fibra,
  • módulo de ruptura,
  • propiedades mecánicas


Wet chemical analysis was used to determine carbohydrate structural contents, as well as ash and extractive contents on four Guadua Angustifolia Kunth forms (f. Cebolla, f. Macana, f. Rayada Amarilla and f. Castilla) with two different growth ages (young and mature). Soluble and insoluble fiber content was determined by using AOAC 985.29 method. Bending tests were conducted in a universal testing machine following ASTM D143 standard method in order to determine modulus of rupture (MOR). Finally, a correlation between contents of chemical compounds and bending behavior (MOR modulus) was carried out with SPSS Statistical Package, version 7.0, obtaining Pearson’s coefficient correlation and showing the relationship between soluble fibers and bending response for mature Guadua culms

Correlación entre composición química y respuesta mecánica
para dos edades de culmos de bambú Guadua angustifolia Kunth

Mediante un análisis químico, se determinó el contenido de carbohidratos estructurales, contenido de cenizas y el contenido de extractivos
de cuatro formas de Guadua Angustifolia Kunth (f. Rayada Amarilla, f. Macana, f. Cebolla y f. Castilla), en dos edades de crecimiento
diferente (joven y madura). Se determinó el contenido de fibra soluble e insoluble mediante el método oficial AOAC 985.29. Se
realizaron ensayos de flexión, siguiendo el método estándar ASTM D143, para determinar el módulo de ruptura (MOR) en las cuatro variedades
de Guadua. Por último, se realizó una correlación mediante el paquete estadístico SPSS versión 7, entre el contenido de compuestos
químicos y la respuesta de flexión, obteniendo el coeficiente de correlación de Pearson. Se encontró una correlación entre el contenido
de fibra soluble e insoluble y la respuesta de flexión (MOR) en las Guaduas con mayor edad de crecimiento (maduras).


  1. AOAC-2000 Official Methods of Analysis of the Associaion of Official Analytical Chemists, 17th ed. Method 985.29.
  2. Angeles, G., M. Lascurain, R. Davalos-Sotelo, R.P. Zarate-Morales and F. Ortega-Escalona. 2013. Anatomical and physical changes in leaves during the production of tamales. American Journal of Botany 100(8):1509-1521.
  3. ASTM D143-94. 2007. Standard Test Methods for Small Clear Specimens of Timber. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA.
  4. Bystriakova, N., V. Kapos, I. Lysenko and C.M.A. Stapleton. 2003. Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific region. Biodiversity and Conservation 12(9):1833-1841.
  5. Chaomao, H., H. Jizhen, Z.Guoxue and Y. Yuming. 2004. Studies on the present situation and prospects of bamboo diversities and its sustainable development in China. World Forestry Research 2004(1):51-54
  6. Chung, K.F. and W.K. Yu. 2002. Mechanical properties of structural bamboo for bamboo scaffoldings. Engineering Structures 24(4):429-442.
  7. Correal, J.F. and J. Arbealez. 2010. Influence of age and height position on Colombian Guadua angustifolia bamboo mechanical properties. Maderas. Ciencia y tecnología 12(2):105-113.
  8. Davalos-Sotelo, R. 2005. Determination of elastic properties of clear wood by the homogenization method in two dimensions. Wood Science and Technology 39: 3 85 - 417.
  9. Genet, M., Stokes, A., Salin, F., Mickovski, S.B., Fourcaud, T., Dumail, J-F. van Beek., R. 2005. The influence of cellulose content on tensile strength in tree roots. Plant and Soil 278(1-2):1-9.
  10. Ghavami, K. 2005. Bamboo as reinforcement in structural concrete elements. Cement and concrete composites 27(6):637- 649.
  11. Ghavami, K. and A.B. Marinho. 2005. Propriedades físicas e mecânicas do colmo inteiro do bambu da espécie Guadua angustifolia. Revista Brasileira de Engenharia Agrícola e Ambiental 9(1):107-114.
  12. Grosser, D. and W. Liese. 1971. On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Science and Technology 5:290 -312.
  13. Gyansah, L., A.S. Akinwonmi and M. Affam. 2010. The fracture behaviour of fresh bamboo under uniaxial compressive loading condition. Research Journal of Applied Sciences, Engineering and Technology 2(8):720-726.
  14. Hammett, A.L., L. Robert, L. Youngs, X. Sun and M. Chandra. 2005. Non- wood fiber as an alternative to wood fiber in China pulp and paper industry. Holzforschung 55(2):219-224.
  15. Higuchi, H. 1957. Biochemical studies of lignin formation, III. Physiologia Plantarum 10(4):633- 648.
  16. Liese, W. 1998. The anatomy of bamboo culms, Technical report. International network for bamboo and rattan (INBAR). BRILL. 208 p.
  17. Liese, W. and F.R.G. Hamburg. 1987. Research on bamboo. Wood Science and Technology 21(3):189-207.
  18. Liese, W. and G. Weiner. 1996. Ageing of bamboo culms, A review. Wood Science and Technology 30(2):77-89.
  19. Low, I.M., Z.Y. Che and B.A. Latella,. 2006. Mapping the structure, composition and mechanical properties of bamboo. Journal of Material Research 21:1969-1976.
  20. Lybeer, B. and G. Koch. 2005. A topochemical and semi-quantitative study of the lignifications during ageing of bamboo culms (phyllostachysviridiglaucescens). IAWA Journal 26(1):99-109.
  21. McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83(1):37- 46.
  22. Mohan, K.M. and K. Mohana. 2007. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite Structures 77(3):288-295.
  23. Ning, L. and B. Yang. 2007. Characteristics of bamboo fiber and its application. Progress in Textile Science & Technolog y 2 0 0 7(3):15 -17.
  24. Oda, T. 2003. Yam and cloths made mainly from bamboo sheaths and methods for manufacturing the same, United States Patent application. Publication number US7060211 B2, Application number US 10/222,839.
  25. Persson, K. 2000. Micromechanical modeling of wood and fiber properties. Ph.D. dissertation, Lund University, Lund-Sweden.Phillips, M. 1939. Studies on the quantitative estimation of lignin. IV Effect of certain proteins on the determination of lignin by the fuming hydrochloric acid method. Journal of the Association of Official Agricultural Chemists 22: 422-427.
  26. Porterfield, W.M. 1928. A study of the grand period of growth in bamboo. Bulletin of the Torrey BotanicalClub 55(7):327-405.
  27. Sánchez-Echeverri, L.A., M. Contreras-Padilla and M.E. Rodriguez-Garcia. 2010. A correlation between soluble and insoluble fiber with the elastic modulus in four varieties of bamboo. Mater. Res. Soc. Symp. Proc. 1277. Materials Research Society Symposium Proceedings 1277 p: 46-51.
  28. Scurlock, J.M.O., D.C. Dayton and B. Hames. 2000. Bamboo: an overlooked biomass resource?.
  29. Biomass and Bioenergy 19(4):229-244.
  30. Selvendran, R.R. 1984. The plant cell as a source of dietary fiber: Chemistry and structure. American Journal of Clinical Nutrition 39 (2): 32 0 -337.
  31. Van der Lugt, P., A.A.J.F. Van de Dobbelsteen and J.J.A. Janssen. 2006. An environmental, economic and practical assessment of bamboo as a building material for supporting structures. Construction and Building Materials 20(9):648-656.