Vol. 27 Núm. 3 (2021): Otoño 2021
Revisiones bibliográficas

Gradiente altitudinal y su influencia en las características edafoclimáticas de los bosques tropicales

Hipolito Murga-Orrillo
Universidad Nacional Autónoma de Alto Amazonas
Manuel Fernando Coronado Jorge
Universidad Nacional de San Martín
Carlos Abanto-Rodríguez
Instituto de Investigaciones de la Amazonía Peruana
Francisco De Almeida Lobo
Universidade Federal de Mato Grosso

Publicado 2021-12-30

Palabras clave

  • altitud,
  • carbono,
  • clima,
  • precipitación,
  • suelo,
  • temperatura
  • ...Más
    Menos
  • altitude,
  • carbon,
  • climate,
  • rainfall,
  • soil,
  • temperature
  • ...Más
    Menos

Resumen

Los gradientes altitudinales pueden generar límites ambientales, influyendo en el crecimiento y desarrollo de las especies vegetales. Se tuvo por objetivo identificar las variaciones edafoclimáticas en gradientes altitudinales y su influencia en los bosques tropicales. Se buscaron artículos de investigación con ámbito geográfico entre 27º N y 27º S de latitud, con influencia de gradientes altitudinales entre 0 m y 5000 m. Se sistematizó la información, organizándose en temáticas del clima, en las propiedades fisicoquímicas y biológicas del suelo, y en el comportamiento de las especies forestales. Se determinó que la temperatura media anual (TMA) disminuye conforme aumenta la altitud; y la precipitación anual (PA) presenta máximos pluviales en altitudes medias. Los valores del pH del suelo disminuyen hasta 3000 m, aumentando sobre esta altitud; sin embargo, la materia orgánica, carbono orgánico, carbono total (CT), nitrógeno total (NT) y la relación C/N del suelo aumentan hasta 3000 m; sobre esta altitud los valores disminuyen. El potasio (K), el calcio (Ca), el magnesio (Mg), el fierro (Fe), y el aluminio (Al) del suelo disminuyen con el aumento de la altitud por influencia de las bajas temperaturas y humedad del suelo (HS). La variación edafoclimática en los gradientes altitudinales interactúa con las especies forestales, afectando las respuestas fisiológicas, disminuyendo su crecimiento y altura con el aumento de la altitud; del mismo modo disminuye su densidad y diversidad con el aumento de la altitud. Las especies forestales de los trópicos prosperan en amplios o estrechos límites altitudinales y edafoclimáticos, por lo que identificar estos límites es fundamental no solo en términos ecológicos, sino también políticos y económicos, para diseñar políticas efectivas de uso de la tierra y de conservación.

Citas

  1. Acharya, B. K., Chettri, B., & Vijayan, L. (2011). Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica, 37(4), 329-336. doi: 10.1016/j.actao.2011.03.005
  2. Asner, G. P., & Martin, R. E. (2016). Convergent elevation trends in canopy chemical traits of tropical forests. Global Change Biology, 22(6), 2216–2227. doi: 10.1111/gcb.13164
  3. Asner, G. P., Martin, R. E., Anderson, C. B., Kryston, K., Vaughn, N., Knapp, D. E., ..., & Tupayachi, R. (2017). Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytologist, 214(3), 973-988. doi: 10.1111/nph.14068
  4. Aybar-Camacho, C.; Lavado-Casimiro, W.; Sabino, E.; Ramírez, S.; Huerta, J., & Felipe-Obando, O. (2017). Atlas de zonas de vida del Perú – Guía Explicativa. Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). Dirección de Hidrología. 30 p.
  5. Bahar, N. H., Ishida, F. Y., Weerasinghe, L. K., Guerrieri, R., O'Sullivan, O. S., Bloomfield, K. J., ..., & Phillips, O. L. (2017). Leaf‐level photosynthetic capacity in lowland Amazonian and high‐elevation Andean tropical moist forests of Peru. New Phytologist, 214(3), 1002-1018. doi: 10.1111/nph.14079
  6. Baldos, A. P., Corre, M. D., & Veldkamp, E. (2015). Response of N cycling to nutrient inputs in forest soils across a 1000–3000 m elevation gradient in the Ecuadorian Andes. Ecology, 96(3), 749-761. doi: 10.1890/14-0295.1
  7. Bauters, M., Verbeeck, H., Demol, M., Bruneel, S., Taveirne, C., Van der Heyden, D., ..., & Boeckx, P. (2017). Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences, 14(23), 5313-5321. doi: 10.5194/bg-14-5313-2017
  8. Blum, C. T., Roderjan, C. V., & Galvão, F. (2011). O clima e sua influência na distribuição da Floresta Ombrófila Densa na Serra da Prata, Morretes, Paraná. Floresta, 41(3), 589-598. doi: 10.5380/rf.v41i3.24052
  9. Brambach, F., Leuschner, C., Tjoa, A., & Culmsee, H. (2017). Diversity, endemism, and composition of tropical mountain forest communities in Sulawesi, Indonesia, in relation to elevation and soil properties. Perspectives in Plant Ecology, Evolution and Systematics, 27, 68-79. doi: 10.1016/j.ppees.2017.06.003
  10. Camenzind, T., Homeier, J., Dietrich, K., Hempel, S., Hertel, D., Krohn, A., ..., & Rillig, M. C. (2015). Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biology and Biochemistry, 94, 37-47. doi: 10.1016/j.soilbio.2015.11.011
  11. Camenzind, T., Scheu, S., & Rillig, M. C. (2019). Expanding the toolbox of nutrient limitation studies: A novel method of soil microbial in‐growth bags to evaluate nutrient demands in tropical forests. Functional Ecology, 33(8), 1536-1548. doi: 10.1111/1365-2435.13352
  12. Cardinael, R., Chevallier, T., Cambou, A., Beral, C., Barthès, B. G., Dupraz, C., ..., & Chenu, C. (2017). Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agriculture, Ecosystems & Environment, 236, 243-255. doi: 10.1016/j.agee.2016.12.011
  13. Chen, D., Yu, M., González, G., Zou, X., & Gao, Q. (2017). Climate impacts on soil carbon processes along an elevation gradient in the tropical luquillo experimental forest. Forests, 8(3), 90. doi: 10.3390/f8030090
  14. De la Cruz-Amo L, Bañares-de-Dios G, Cala V, Granzow-de la Cerda I, Espinosa CI, Ledo A, Salinas N, Macía MJ and Cayuela L .(2020). Trade Offs Among Aboveground, Belowground, and Soil Organic Carbon Stocks Along Altitudinal Gradients in Andean Tropical Montane Forests. Frontiers in Plant Science. 11,106. doi: 10.3389/fpls.2020.00106
  15. Debnath, P., Deb, P., Sen, D., Pattannaik, S. K., Sah, D., & Ghosh, S. K. (2012). Physico-chemical properties and its relationship with water holding capacity of cultivated soils along altitudinal gradient in Sikkim. International Journal of Agriculture, Environment and Biotechnology, 5(2), 161-166.
  16. Desalegn, W., & Beierkuhnlein, C. (2010). Plant species and growth form richness along altitudinal gradients in the southwest Ethiopian highlands. Journal of Vegetation Science, 21(4), 617-626. doi: 10.1111/j.1654-1103.2010.01177.x
  17. Ding, Y., Liu, G., Zang, R., Zhang, J., Lu, X., & Huang, J. (2016). Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants. Scientific Reports, 6, 19706. doi: 10.1038/srep19706
  18. Ding, Y., Zang, R., Lu, X., Huang, J., & Xu, Y. (2019). The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient. Journal of Vegetation Science, 30(5), 973-983. doi: 10.1111/jvs.12786
  19. Fahey, T. J., Sherman, R. E., & Tanner, E. V. J. (2015). Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. Journal of Tropical Ecology, 32(05), 355–367. doi: 10.1017/S0266467415000176
  20. Gairola, S., Rawal, R. S., & Todaria, N. P. (2008). Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. African Journal of Plant Science, 2(6), 42-48. doi: 10.5897/AJPS.9000126
  21. Girardin, C. A. J., Malhi, Y., Aragao, L. E. O. C., Mamani, M., Huaraca Huasco, W., Durand, L., ..., & Salinas, N. (2010). Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16(12), 3176-3192. doi: 10.1111/j.1365-2486.2010.02235.x
  22. González-Rojas, M., Murillo-Cruz, R., D. M., Virginio-Filho, E., & Ávila-Arias, C. (2018). Influence of biophysical and management factors on the growth of Cedrela odorata L. in association with coffee in Pérez Zeledón, Costa Rica. Revista Forestal Mesoamericana Kurú, 15(36), 46-58. doi: 10.18845/rfmk.v15i36.3420
  23. He, X., Hou, E., Liu, Y., & Wen, D. (2016). Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Scientific reports, 6, 24261. doi: 10.1038/srep24261
  24. Hicks, L. C., Meir, P., Nottingham, A. T., Reay, D. S., Stott, A. W., Salinas, N., & Whitaker, J. (2019). Carbon and nitrogen inputs differentially affect priming of soil organic matter in tropical lowland and montane soils. Soil Biology and Biochemistry, 129, 212-222. doi: 10.1016/j.soilbio.2018.10.015
  25. Holdridge, L. R. (1967). Life zone ecology. Life zone ecology, Tropical Science Center. San Jose´, Costa Rica, 206 p.
  26. Kharal, D. K., Meilby, H., Rayamajhi, S., Bhuju, D., & Thapa, U. K. (2015). Tree ring variability and climate response of Abies spectabilis along an elevation gradient in Mustang, Nepal. Banko Janakari, 24(1), 3–13. doi: 10.3126/banko.v24i1.13473
  27. Li, L., Vogel, J., He, Z., Zou, X., Ruan, H., Huang, W., ..., & Bianchi, T. S. (2016). Association of soil aggregation with the distribution and quality of organic carbon in soil along an elevation gradient on Wuyi Mountain in China. PLoS ONE, 11(3). doi: 10.1371/journal.pone.0150898
  28. Lin, Y. T., & Chiu, C. Y. (2016). Elevation gradient of soil bacterial communities in bamboo plantations. Botanical studies, 57(1),8. doi: 10.1186/s40529-016-0123-0
  29. Liu, D., Liu, G., Chen, L., Wang, J., & Zhang, L. (2018). Soil pH determines fungal diversity along an elevation gradient in Southwestern China. Science China Life Sciences, 61(6), 718-726. doi: 10.1007/s11427-017-9200-1
  30. Llambí, L. D., Durbecq, A., Cáceres-Mago, K., Cáceres, A., Ramírez, L., Torres, E., & Méndez, Z. (2020). Interactions between nurse-plants and an exotic invader along a tropical alpine elevation gradient: growth-form matters. Alpine Botany, 1-15. doi: 10.1007/s00035-020-00235-6
  31. Ma, M., & Chang, R. (2019). Temperature drive the altitudinal change in soil carbon and nitrogen of montane forests: Implication for global warming. Catena, 182, 104126. doi: 10.1016/j.catena.2019.104126
  32. Malhi, Y., Girardin, C. A., Goldsmith, G. R., Doughty, C. E., Salinas, N., Metcalfe, D. B., ..., & Aragão, L. E. (2017). The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist, 214(3), 1019-1032. doi: 10.1111/nph.14189
  33. Martínez‐Camilo, R., González‐Espinosa, M., Ramírez‐Marcial, N., Cayuela, L., & Pérez‐Farrera, M. Á. (2018). Tropical tree species diversity in a mountain system in southern Mexico: local and regional patterns and determinan factors. Biotropica, 50(3), 499-509. doi: 10.1111/btp.12535
  34. Martinson, G. O., Corre, M. D., & Veldkamp, E. (2013). Responses of nitrous oxide fluxes and soil nitrogen cycling to nutrient additions in montane forests along an elevation gradient in southern Ecuador. Biogeochemistry, 112(1-3), 625-636. doi: 10.1007/s10533-012-9753-9
  35. Matson, A. L., Corre, M. D., Burneo, J. I., & Veldkamp, E. (2015). Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry, 122(2-3), 281-294. doi: 10.1007/s10533-014-0041-8
  36. Nottingham, A. T., Hicks, L. C., Ccahuana, A. J., Salinas, N., Bååth, E., & Meir, P. (2018). Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biology and fertility of soils, 54(2), 219-228. doi: 10.1007/s00374-017-1247-4
  37. Nottingham, A., Fierer, N., Turner, B., Whitaker, J., Ostle, N., McNamara, N., ..., & Silman, M. (2016). Temperature drives plant and soil microbial diversity patterns across an elevation gradient from the Andes to the Amazon. bioRxiv, 079996. doi: 10.1101/079996
  38. Oliveras, I., Bentley, L., Fyllas, N. M., Gvozdevaite, A., Shenkin, A. F., Prepah, T., ..., & Schwantes Marimon, B. (2020). The influence of taxonomy and environment on leaf trait variation along tropical abiotic gradients. Frontiers in Forests and Global Change, 3, 18. doi: 10.3389/ffgc.2020.00018
  39. Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., ..., & Gebert, F. (2019). Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568(7750), 88-92. doi: 10.1038/s41586-019-1048-z
  40. Pierre, S., Hewson, I., Sparks, J. P., Litton, C. M., Giardina, C., Groffman, P. M., & Fahey, T. J. (2017). Ammonia oxidizer populations vary with nitrogen cycling across a tropical montane mean annual temperature gradient. Ecology, 98(7), 1896-1907. doi: 10.1002/ecy.1863
  41. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project,org/.
  42. Ren, C., Zhang, W., Zhong, Z., Han, X., Yang, G., Feng, Y., & Ren, G. (2018). Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of The Total Environment, 610-611, 750–758. doi: 10.1016/j.scitotenv.2017.08.110
  43. Rolland, C. (2003). Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions. Journal of Climate, 16, 1032–1046. doi: 10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2
  44. Rosado, B. H. P., Joly, C. A., Burgess, S. S. O., Oliveira, R. S., & Aidar, M. P. M. (2015). Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees, 30(1), 47–61. doi: 10.1007/s00468-015-1165-8
  45. Sidor, C. G., Popa, I., Vlad, R., & Cherubini, P. (2015). Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees, 29(4), 985–997. doi: 10.1007/s00468-015-1178-3
  46. Soethe, N., Wilcke, W., Homeier, J., Lehmann, J., & Engels, C. (2008). Plant growth along the altitudinal gradient—role of plant nutritional status, fine root activity, and soil properties. In Gradients in a tropical mountain ecosystem of Ecuador (pp. 259-266). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-73526-7_24
  47. Terra, M. D. C. N. S., Mello, J. M. D., Mello, C. R. D., Santos, R. M. D., Nunes, A. C. R., & Raimundo, M. R. (2015). Influência topo-edafo-climática na vegetação de um fragmento de Mata Atlântica na Serra da Mantiqueira, MG. Revista Ambiente & Água, 10(4), 928-942. doi: 10.4136/ambi-agua.1705
  48. Villar, J. C. E., Ronchail, J., Lavado, W., Carranza, J., Cochonneau, G., De Oliveira, E. U. R. I. D. E. S., & Pombosa, R. (2010). Variabilidad espacio-tiemporal de las lluvias en la cuenca amazónica y su relación con la variabilidad hidrológica regional. Un enfoque particular sobre la región andina. Revista Peruana Geo-Atmosférica, 2, 99-130.
  49. Wang, H. C., Chou, C. Y., Chiou, C. R., Tian, G., & Chiu, C. Y. (2016). Humic acid composition and characteristics of soil organic matter in relation to the elevation gradient of moso bamboo plantations. PLoS ONE, 11(9). doi: 10.1371/journal.pone.0162193
  50. Wang, Z., Yang, B., Deslauriers, A., & Bräuning, A. (2014). Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees, 29(1), 25–34. doi: 10.1007/s00468-014-1037-7
  51. Whitaker, J., Ostle, N., Nottingham, A. T., Ccahuana, A., Salinas, N., Bardgett, R. D., ..., & McNamara, N. P. (2014). Microbial community composition explains soil respiration responses to changing carbon inputs along an A ndes‐to‐A mazon elevation gradient. Journal of Ecology, 102(4), 1058-1071. doi: 10.1111/1365-2745.12247
  52. Wilcke, W., Oelmann, Y., Schmitt, A., Valarezo, C., Zech, W. y Homeier, J. (2008). Soils along the altitudinal transect and in catchments. In Gradients in a Tropical Mountain Ecosystem of Ecuador (pp. 75-85). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-73526-7_9
  53. Zhu, Z. X., Nizamani, M. M., Sahu, S. K., Kunasingam, A., & Wang, H. F. (2019). Tree abundance, richness, and phylogenetic diversity along an elevation gradient in the tropical forest of Diaoluo Mountain in Hainan, China. Acta Oecologica, 101, 103481. doi: 10.1016/j.actao.2019.103481