Vol. 23 Núm. 1 (2017): Primavera 2017
Artículos Científicos

Site index curves for natural Aleppo pine forests in the central Ebro valley (Spain)

Alberto Rojo-Alboreca
Universidad de Santiago de Compostela
Ana María Cabanillas-Saldaña
Servicio Provincial de Desarrollo Rural y Sostenibilidad. Gobierno de Aragón.
Marcos Barrio-Anta
Universidad de Oviedo
Eduardo Notivol-Paíno
Unidad de Recursos Forestales. CITA. Gobierno de Aragón
José Javier Gorgoso-Varela
Universidad de Santiago de Compostela
Portada Madera y Bosques 23(1)

Publicado 2017-05-04

Palabras clave

  • Productividad,
  • Pinus halepensis,
  • modelo de Hossfeld,
  • GADA


Site index curves were created for natural Aleppo pine (Pinus halepensis Mill.) stands in the Ebro Valley (northeastern Spain). Data were obtained from 54 felled dominant trees. The Generalized Algebraic Difference Approach (GADA) was used to fit 11 equations with a longitudinal data structure that included all possible growth intervals. Three statistical criteria were used for model comparison: root mean square error (RMSE), adjusted coefficient of determination (R2adj) and Akaike’s information criterion (AIC). Graphical evaluation of the data (plots of observed against predicted values and of residuals against predicted values) was also conducted. In addition, the root mean square error (RMSE) was plotted against age. Finally, fitted site index curves for different site qualities were superimposed on the profile plots of the stems analysed. The best reference age (60 years) was calculated from the relative error in the dominant height prediction. The Hossfeld IV model proved the most suitable for representing site index in the study area. Furthermore, only three site index curves (6, 10 and 14 m at 60 years) were suitable for classifying the entire study area because of the low productivity of the stands. These were compared with other site index curves developed for Spain and other countries, for the natural range of distribution of the species. Specific site index curves must be created for the study area, because the existing qualities and growth patterns are not well-represented in other models.


  1. Abbas, H., M. Barbero, R. Loisel and P. Quezel. 1985a. The Aleppo pine forests in Mediterranean south-eastern France. Ecodendrometric analyses. Part 1. Foret Mediterraneenne 7(1): 35-42, 105, 110-112.
  2. Abbas, H., M. Barbero, R. Loisel and P. Quezel. 1985b. The Aleppo pine forests in Mediterranean south-eastern France. Ecodendrometric analyses. Part 2. Foret Mediterraneenne 7(2): 123-130, 198-200.
  3. Abelló, M.A. 1988. Historia y evolución de las repoblaciones forestales en España. Colección Tesis Doctorales, 126/88. Editorial de la Universidad Complutense de Madrid, Madrid. 749 p.
  4. Adame P., I. Cañellas, S. Roig and M. del Rio. 2006. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaicaWilld.). Annals of Forest Science 63: 929-940.
  5. Álvarez-González, J.G., A.D. Ruiz-González, R. Rodríguez-Soalleiro and M. Barrio-Anta. 2005. Ecoregional site index models for Pinus pinaster in Galicia (Northwestern Spain). Annals of Forest Science 62: 1-13.
  6. Assmann, E. 1970. The principles of forest yields study. Pergamon Press, Oxford. 506 p.
  7. Bailey, R.L. and J.L. Clutter. 1974. Base-age polymorphic site curves. Forest Science 20: 155-159.
  8. Barrio-Anta, M. and U. Diéguez-Aranda. 2005. Site quality of pedunculate oak (Quercus robur L.) stands in Galicia (northwest Spain). European Journal of Forest Research 124: 19-28.
  9. Barrio-Anta, M., F. Castedo-Dorado, U. Diéguez-Aranda, J.G. Álvarez-González, B.R. Parresol and R. Rodríguez-Soalleiro. 2005. Development of a basal area growth system for maritime pine in northwestern Spain using the GADA approach. Canadian Journal of Forest Research 36(6): 1461-1474.
  10. Belghazi, B., M. Ezzahiri and F. Romane. 2000. Productivity of natural stands of Aleppo pine (Pinus halepensis Miller) in the Tamga forest (High Atlas, Morocco). Cahiers Agricultures 9(1): 39-46.
  11. Bertalanffy, L.v. 1949. Problems of organic growth. Nature 163: 156-158.
  12. Bertalanffy, L.v. 1957. Quantitative laws in metabolism and growth. Q. Rev. Biol. 32: 217-231.
  13. Burnham, K.P. and D.R. Anderson. 1998. Model selection and multimodel inference: A practical information-theoretic approach. Springer-Verlag, New York. 488 p.
  14. Cabanillas, A. 2010. Bases para la gestión de masas naturales de Pinus halepensis Mill. en el Valle del Ebro. Doctoral Thesis. Universidad Politécnica de Madrid (Spain). 201 p.
  15. Carmean, W.H. 1970. Tree height–growth patterns in relation to soil and site. In: Tree growth and forest soils. Oregon State University Press, Corvallis, OR (USA). p: 499-512.
  16. Carmean, W.H. 1972. Site index curves for upland oaks in central States. Forest Science 18: 109-120.
  17. Castellani, C., G. Ghidini and V. Tosi. 1980. Tavole dendrometriche ed alsometrica del pino d'Aleppo (Pinus halepensis Mill.) valevoli in Italia. Annali dell'Istituto Sperimentale per l'Assestamento Forestale e per l'Alpicoltura 8: 3-44.
  18. Cieszewski, C.J. 2000. Analytical solution to the generalized log-logistic equation. Forest Science 46: 291-296.
  19. Cieszewski, C.J. 2001. Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Canadian Journal of Forest Research 31: 165-173.
  20. Cieszewski, C.J. 2002. Comparing fixed and variable base-age site equations having single versus multiple asymptotes. Forest Science 48(1): 7-23.
  21. Cieszewski, C.J. 2003. Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3 = (axm)/(c + xm-1), a simplified mixed-model and scant subalpine fir data. Forest Science 49(4): 539-554.
  22. Cieszewski, C.J. and R.L. Bailey. 2000. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science 46(1): 116-126.
  23. Cieszewski, C.J. and I.E. Bella. 1989. Polymorphic height and site index curves for lodge pole pine in Alberta. Canadian Journal of Forest Research 19: 1151-1160.
  24. Cieszewski, C.J., M. Harrison and S.W. Martin. 2000. Practical methods for estimating non-biased parameters in self-referencing growth and yield models. Daniel B. Warnell School of Forest Resources, University of Georgia, Athens, Georgia 30602, USA. PMRC Technical Report 2000-7.
  25. Clutter, J.L., J.C. Fortson, L.V. Pienaar, H.G. Brister and R.L. Bailey. 1983. Timber management: a quantitative approach. John Wiley & Sons. Inc., New York. 333 p.
  26. Corral-Rivas, J.J., J.G. Álvarez-González, A.D. Ruiz-González and K.v. Gadow. 2004. Compatible height and site index models for five pine species in El Salto, Durango (Mexico). Forest Ecology and Management 201: 145-160.
  27. Couhert, B. and P. Duplat. 1993. Le Pin d´Alep. In Recontre Forestiers-Chercheurs en Forêt Méditerranée. La Grande Motte (34), 6-7 October 1993. Ed INRA, Les Coloques, 63:12-147.
  28. Diéguez-Aranda, U., J.G. Álvarez-González, M. Barrio-Anta and A. Rojo-Alboreca. 2005a. Site quality equations for Pinus sylvestris L. plantations in Galicia (north-western Spain). Annals of Forest Science 62: 1-10.
  29. Diéguez-Aranda, U., H.E. Burkhart and R. Rodríguez-Soalleiro. 2005b. Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain. Forest Ecology and Management 215(1-3): 271-284.
  30. Elfving, B. and A. Kiviste. 1997.Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. Forest Ecology and Management 98: 125-134.
  31. Erviti, J.J. 1991. Desarrollo de modelos de crecimiento y producción de las masas forestales de Pinus halepensis Mill. en España. Doctoral Thesis, Universidad Politécnica de Madrid. 314 p.
  32. Fontes, L., M. Tomé, M.B. Coelho, H. Wright, J.S. Luis and P. Savill. 2003. Modelling dominant height growth of Douglas-fir (Pseudotsuga mensiesii (Mirb) Franco) in Portugal. Forestry 76(5): 509-523.
  33. Franz, F. and H. Forster. 1980. Table de production de pin d´Alep pour les Aurés - Algeria. Chaire de la Production Forestière de l´Université de Munich. Forschungs von haben in Auftrag des Bundesministeriums für wirtschaftliche Zusammenarbeit, Bonn.
  34. Gadow, K.v. and G. Hui. 1999. Modelling Forest Development. Kluwer Academic Publishers. Dordrecht (The Netherlands). 213 p.
  35. Gil, L., P.M. Díaz-Fernández, M.P. Jiménez, M. Roldán, R. Alía, D. Agúndez, J. De Miguel, S. Martín and M. De Tuero. 1996. Las regiones de procedencia de Pinus halepensis Mill. en España. Organismo Autónomo de Parques Nacionales, Madrid. 113 p.
  36. Goelz, J.C.G. and T.E. Burk. 1992. Development of a well-behaved site index equation: jack pine in north central Ontario. Canadian Journal of Forest Research 22: 776-784.
  37. Gualdi, V. 1979. The productivity of even-aged stands of Pinus halepensis on the high plateau of Constantine in Algeria. Italia Forestale e Montana 34(3): 101-120.
  38. Herranz, J.M. 2000. Aspectos botánicos y ecológicos del pino carrasco (Pinus halepensis Mill.). Cuadernos de la Sociedad Española de Ciencias Forestales 10: 13-17.
  39. Huang, S. 1999. Development of compatible height and site index models for young and mature stands within an ecosystem-based management framework. In: Amaro A., Tomé M. (eds.). Empirical and process-based models for forest tree and stand growth simulation. Oeiras (Portugal), 21-27 September 1997. Ediçoes Salamandra. p: 61-98.
  40. Kiviste, A.K., J.G. Álvarez-González, A. Rojo-Alboreca and A.D. Ruiz-González. 2002. Funciones de crecimiento de aplicación en el ámbito forestal. Monografía INIA: Forestal nº 4. Ministerio de Ciencia y Tecnología. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Madrid. 190 p.
  41. Lopez-Senespleda, E., A. Bravo-Oviedo, R. Alonso and G. Montero. 2014. Resource Communication. Modeling dominant height growth including site attributes in the GADA approach for Quercus faginea Lam. in Spain. Forest Systems 23(3): 494-499.
  42. Lundqvist, B. 1957. On height growth in cultivated stands of pine and spruce in Northern Sweden. Medd. Fran Statens Skogforsk. Band. 47(2): 1-64.
  43. Martín-Bolaños, M. 1947. Ensayo de investigación indirecta sobre origen, desarrollo y producciones del monte alto. IFIE 34. Madrid. 161 p.
  44. McDill, M.E and R.L. Amateis. 1992. Measuring forest site quality using the parameters of a dimensionally compatible height growth function. Forest Science 38: 409-429.
  45. Monserud, R.A. 1984. Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. Forest Science 30: 943-965.
  46. Monserud, R.A. 1988. Variations on a theme of site index. In: Proceedings IUFRO conference on forest growth modelling and prediction, August 23-27, 1987, Minneapolis, M.N. Gen. Tech. Rep. NC-120. St. Paul, MN: U.S. Department of Agriculture, Forest Service; North Central Forest Experimental Station. p: 419-427.
  47. Montero, G., J.M. Grau, R. Ruiz-Peinado, C. Ortega and I. Cañellas. 2000. Tablas de producción para Pinus halepensis Mill. Cuadernos de la Sociedad Española de Ciencias Forestales 10: 183-188.
  48. Montero, G., I. Cañellas, and R. Ruiz-Peinado. 2001. Growth and yield models for Pinus halepensis Mill. Investigación Agraria: Sistemas y Recursos Forestales 10(1): 180-201.
  49. Newberry, J.D. 1991. A note on Carmean’s estimate of height from stem analysis data. Forest Science 37(1): 368-369.
  50. Novak, K., M. Luis, K. Čufarc, J. Raventós. 2011. Frequency and variability of missing tree rings along the stems of Pinus halepensis and Pinus pinea from a semiarid site in SE Spain. Journal of Arid Environments 75(5): 494-498.
  51. Palahí, M., M. Tomé, T. Pukkala, A. Trasobares and G. Montero. 2003. Site index model for Pinus sylvestris in north-east Spain. Forest Ecology and Management 187: 35-47.
  52. Panetsos, K.P. 1981. Monograph of Pinus halepensis (Mill.) and P. brutia (Ten.). Analiza Sumarstvo 9(2): 39-77.
  53. Pardé, J. 1957. La Productivité des Forèts de Pin d´Alep en France. Annals de l´Ecole National des Eaux et Forêts 15(2): 365-414.
  54. Parresol B.R. and J.S. Vissage. 1998. White Pine Site Index for the Southern Forest Survey. Res. Pap. SRS-10. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station.10 p.
  55. Pita, P.A. 1964. La calidad de la estación en las masas de Pinus sylvestris de la Península Ibérica. Anales del Instituto Forestal de Investigaciones y Experiencias 9: 5-28.
  56. Pita, P.A. 1965. Crecimiento y producción de las masas forestales españolas (Resumen de la medición de parcelas en el año 1965). Anales del Instituto Forestal de Investigaciones y Experiencias 10: 35-59.
  57. Pita, P.A. 1966. Clasificación provisional de las calidades de estación en las masas de pino piñonero. Anales del Instituto Forestal de Investigaciones y Experiencias, Tomo II: 171-182.
  58. Pita, P.A. 1991. Potencialidad de las estaciones forestales. Curvas de calidad. Seminario sobre Inventario y Ordenación de Montes, Valsaín. Unidad Temática 1: 18-39.
  59. Ramírez-Maldonado, H., R.L. Bailey and B.E. Borders. 1988. Some implications of the algebraic difference approach for developing growth models. In: Ek A.R, Shifley S.R., Burk T.E. (eds). Proceedings IUFRO conference on forest growth modelling and prediction, August 23-27, 1987, Minneapolis, MN. Gen. Tech. Rep. NC-120. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experimental Station, 731-738.
  60. Richards, F.J. 1959. A flexible growth function for empirical use. J. Exp. Bot. 10: 290-300.
  61. Röhle, H. 1992. Ertragstafel für die Aleppokiefer (Pinus halepensis) in Israel. Lehrstul für Waldwachstum-kunde der Universität München.
  62. SAS Institute Inc. 2001. SAS/STATTM User´s Guide. Relase 8.2. Cary, N.C. USA.
  63. Schumacher, F.X. 1939. A new growth curve and its application to timber yield studies. Journal of Forestry 37: 819-820.
  64. Sharma M., R.L. Amateis and H.E. Burkhart. 2002. Top height definition and its effect on site index determination in thinned and unthinned loblolly pine plantations. Forest Ecology and Management 168: 163-175.
  65. Sloboda, V.B. 1971. Zur Darstellung von Wachstumprozessen mit Hilfe von Differentialgleichungen erster Ordung. Mitteillungen der Badenwürttem-bergischen Forstlichen Versuchs und Forschungsanstalt.
  66. Souleres, G. 1975. Site-quality classes and yield of Tunisian Pinus halepensis forests. Revue Forestiere Francaise 27(1): 41-49.
  67. Tahar, S., M. Palahi, S. Garchi, J.A. Bonet, Y. Ammari and M. Pique. 2012. Modeling Dominant Height Growth in Planted Pinus pinea Stands in Northwest of Tunisia. International Journal of Forestry Research 2012, Article ID 902381, 12 pp.
  68. Tomé, M., F. Ribeiro and P. Soares. 2001. O modelo Globulus 2.1. Universidad Técnica de Lisboa-ISA. Relatórios Técnico-científicos do GIMREF n◦ 1.
  69. Vargas-Larreta, B., O.A. Aguirre-Calderón, J.J. Corral-Rivas, F. Crecente-Campo and U. Diéguez-Aranda. 2013. A dominant height growth and site index model for Pinus pseudostrobus Lindl. in northeastern Mexico. Agrociencia 47: 91-106.
  70. Vennetier, M. and J.C. Herve. 1999. Short and long term evolution of Pinus halepensis (Mill.) height growth in Provence (France) and its consequences for timber production. In: Karjalainen T., Spiecker H., Laroussinie O. (eds.). EFI Proceedings 27: 253-265.