Vol. 26 Núm. 3 (2020): Otoño 2020
Artículos Científicos

Análisis perceptual del mercado energético basado en biomasa lignocelulósica de origen arbóreo en Costa Rica

Juan Carlos Valverde
Universidad de Concepción/Instituto Tecnológico de Costa Rica
Biografía
Dagoberto Arias
Instituto Tecnológico de Costa Rica
Biografía
Rooel Campos
Instituto Tecnológico de Costa Rica
Biografía
María Fernanda Jiménez
Instituto Tecnológico de Costa Rica
Biografía
Laura Brenes
Instituto Tecnológico de Costa Rica
Biografía

Publicado 2020-12-10

Palabras clave

  • oferta de mercado,
  • demanda de mercado,
  • dendroenergía,
  • energías renovables
  • market supply,
  • market demand,
  • dendroenergy,
  • renewable energy

Resumen

En la última década, la biomasa se ha convertido en una opción de energía renovable; sin embargo, la ausencia de estudios que permitan entender su mercado limita su implementación. El presente estudio analizó la percepción de los actores que componen el mercado de la biomasa vegetal con fines energéticos desde las perspectivas de productores, intermediarios y consumidores. Se encuestaron 52 productores, 33 intermediarios y 55 demandantes de biomasa arbórea de la zona norte de Costa Rica, estudiando el mercado desde la perspectiva técnica, ambiental, financiera y social e identificando las variables que limitan el mercado. Los resultados mostraron que para los aspectos ambientales y sociales hay una similitud de percepción entre los tres sectores; sin embargo, en los aspectos financieros y técnicos existen diferencias significativas en las percepciones, específicamente en el precio de la biomasa, en la homogeneidad de esta y en los costos asociados, además de la competencia con otras fuentes de biomasa agroindustrial. Los análisis mostraron que la variabilidad de la biomasa en cuanto a presentación afecta en 40,5% del mercado, la variación de especies en 24,8%, el contenido de humedad en 10,6%, la disponibilidad de biomasa en el tiempo en 8,4%, la organización y estructuración del mercado en 8,9% y otras variables suman el restante 6,8%. Esto hace necesaria una organización en cuanto a la venta de la biomasa y la correspondiente articulación entre ofertantes y demandantes con la participación de los intermediarios para la viabilidad del mercado de biomasa en Costa Rica.

Citas

  1. Alimi, M., Rhif, A., & Rebai, A. (2017). Nonlinear dynamic of the renewable energy cycle transition in Tunisia: Evidence from smooth transition autoregressive models. International Journal of Hydrogen Energy, 42(13), 8670-8679. doi: 10.1016/j.ijhydene.2016.07.131
  2. Baul, T., Datta, D., & Alam, A. (2018). A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy, 114, 598-608, doi: 10.1016/j.enpol.2017.12.037
  3. Beluli, V. (2019). Smart beer production as a possibility for cyber-attack within the industrial process in automatic control. Procedia Computer Science, 158, 206-213, doi: 10.1016/j.procs.2019.09.043
  4. Bulut, U., & Muratoglu, G. (2019). Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy Policy, 123, 240-250, doi: 10.1016/j.enpol.2018.08.057
  5. Cambero, C., Alexandre, M., & Sowlati, T. (2015). Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada. Resources, Conservation and Recyclin, 105(A), 59-72, doi: 10.1016/j.resconrec.2015.10.014
  6. Chidanand, F. C., Sisodia, G., & Gopalan, S. (2019). A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids. Sustainable Cities and Society, 40, 735-745, doi: 10.1016/j.scs.2018.04.008
  7. Cho, J., & Kim, J. (2019). Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops. Energy, 185, 527-40, doi: 10.1016/j.energy.2019.07.053
  8. Cosentino, V., Favuzza, S., Graditi, G., Ippolito, M., Massaro, F., Sanseverino, E., & Zizz, G. (2012). Smart renewable generation for an islanded system. Technical and economic issues of future scenarios. Energy, 39(1), 196-204. doi: 10.1016/j.energy.2012.01.030
  9. Farhar, B. (1998). Gender and renewable energy: Policy, analysis, and market implications. Renewable Energy, 15(1-4), 230-239, doi: 10.1016/S0960-1481(98)00164-5
  10. Fortini, B., & Dye, K. (2017). At a global scale, do climate change threatened species also face a greater number of non-climatic threats? Global Ecology and Conservation, 11, 207-212, doi: 10.1016/j.gecco.2017.06.006
  11. Franklin-Johnson, E. F., & Canning, L. (2016). Resource duration as a managerial indicator for Circular Economy performance. Journal of Cleaner Production, 133, 589-598, doi, 10.1016/j.jclepro.2016.05.023
  12. Gadaleta, M., Pellicciari, M., & Berselli, G. (2019). Optimization of the energy consumption of industrial robots for automatic code generation. Robotics and Computer-Integrated Manufacturing, 57, 452-464. doi: 10.1016/j.rcim.2018.12.020
  13. Gazijahani, F., & Salehi, J. (2018). Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach. Energy,161, 999-1015, doi: 10.1016/j.energy.2018.07.191
  14. Hodges, G., Chapagain, B., Watcharaanantapong, D., Poudyal, N., Kline, K., & Dale, V. (2019). Opportunities and attitudes of private forest landowners in supplying woody biomass for renewable energy. Renewable and Sustainable Energy Reviews, 113, doi: 10.1016/j.rser.2019.06.012
  15. Instituto Costarricense de Electricidad [ICE] (2015). Potencialidad de nuevas ernergías de producción eléctrica. San José, Costa Rica: ICE.
  16. Kahrl, F., Su, Y., Tennigkeit, T., Yang, Y., & Xu, J. (2013). Large or small? Rethinking China’s forest bioenergy policies. Biomass and Bioenergy, 59, 84-91, doi: 10.1016/j.biombioe.2012.01.042
  17. Koengkan, M., Fuinhas, J., & Marques, A. (2019). The effect of fiscal and financial incentive policies for renewable energy on CO2 emissions: the case for the Latin American region. Amsterdam: Academic Press.
  18. Lee, L., & Yang, J. (2019). Global energy transitions and political systems. Renewable and Sustainable Energy Reviews, 115, doi: 10.1016/j.rser.2019.109370
  19. Lingcheng, K., Zhenning, Z., Jiaping, X., Jing, L., & Yuping, C. (2019). Multilateral agreement contract optimization of renewable energy power grid-connecting under uncertain supply and market demand. Computers & Industrial Engineering, 135, 689-701, doi: 10.1016/j.cie.2019.06.016
  20. Mahidin, E., Mamat, M., Sani, M., Khoerunnisa, F., & Kadarohman, A. (2019). Target and demand for renewable energy across 10 ASEAN countries by 2040. The Electricity Journal, 32(10),8-20, doi: 10.1016/j.tej.2019.106670
  21. Manolis, N., Zagas, T., Karetsos, G., & Poravou, C. (2019). Ecological restrictions in forest biomass extraction for a sustainable renewable energy production. Renewable and Sustainable Energy Reviews, 110, 290-297, doi: 10.1016/j.rser.2019.04.078.
  22. Morseletto, P. (2020). Targets for a circular economy. Resources, Conservation and Recycling, 153,5-15 doi, 10.1016/j.resconrec.2019.104553.
  23. Nematollahi, O., Hoghooghi, H., Rasti, M., & Sedaghat, A. (2016). Energy demands and renewable energy resources in the Middle Eas. Renewable and Sustainable Energy Reviews, 54, 1172-1181
  24. Pang, X., Mörtberg, U., Sallnäs, O., Trubins, R., Nordström, E., & Böttcher, H. (2017). Habitat network assessment of forest bioenergy options using the landscape simulator LandSim – A case study of Kronoberg, southern Sweden. Ecological Modelling, 345, 99-112, doi: 10.1016/j.ecolmodel.2016.12.006
  25. Popescu, G., Mieila, M., Nica, E., & Andrei, J. (2018). The emergence of the effects and determinants of the energy paradigm changes on European Union economy. Renewable and Sustainable Energy Reviews, 81, 768-774, Doi: 10.1016/j.rser.2017.08.055
  26. Röder, M., Thiffault, E., Martínez-Alonso, C., Senez-Gagnon, F., Paradis, L., & Thornley, P. (2019). Understanding the timing and variation of greenhouse gas emissions of forest bioenergy systems. Biomass and Bioenergy, 121, 99-114, doi: 10.1016/j.biombioe.2018.12.019
  27. Royston, S., Selby, J., & Shove, E. (2018). Invisible energy policies: A new agenda for energy demand reduction. Energy Policy, 123, 127-135.,doi: 10.1016/j.enpol.2018.08.052
  28. Simangunsong, B., Sitanggang, V., Manurung, E., Rahmadi, A., Moore, G., Aye, L., & Tambunan, A. (2017). Potential forest biomass resource as feedstock for bioenergy and its economic value in Indonesia. Forest Policy and Economics, 81, 10-17, doi: 10.1016/j.forpol.2017.03.022
  29. Specht, J., & Madlener, R. (2019). Energy Supplier 2.0: A conceptual business model for energy suppliers aggregating flexible distributed assets and policy issues raised. Energy Policy, 135,1-12, doi 10.1016/j.enpol.2019.110911
  30. Ssempiira, J., Kissa, J., Nambuusi, B., Mukooyo, E., Opigo, J., Makumbi, F., . . ., & Vounatsou, P. (2018). Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in Uganda. Parasite Epidemiology and Control, 3(3), 1-11, doi: 10.1016/j.parepi.2018.e00070
  31. Tiwary, A., Spasova, S., & Williams, I. (2019). A community-scale hybrid energy system integrating biomass for localised solid waste and renewable energy solution: Evaluations in UK and Bulgaria. Renewable Energy, 39,960-967, doi: 10.1016/j.renene.2019.02.129
  32. Valverde, J. C., Arias, D., Campos, R., Jiménez, M. F., & Brenes, L. (2020). Forest and agro-industrial residues and bioeconomy: perception of use in the energy market in Costa Rica. Energy Ecology and Environment, 5(5),1-12, doi: 10.1007/s40974-020-00172-4
  33. Verlie, B. (2019). “Climatic-affective atmospheres”: A conceptual tool for affective scholarship in a changing climate. Emotion, Space and Society, 33, 1-12, doi: 10.1016/j.emospa.2019.100623
  34. Viviescas, C., Lima, L., Diuana, D., Vasquez, E., Ludovique, C., Silva, G., . . ., & Paredes, J. (2019). Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renewable and Sustainable Energy Reviews, 113, doi: 10.1016/j.rser.2019.06.039
  35. Zheng, Y., Jenkins, B., Kornbluth, K., Kendall, A., & Træholt, C. (2018). Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty. Applied Energy, 230,836-844, doi: 10.1016/j.apenergy.2018.09.015