Análisis perceptual del mercado energético basado en biomasa lignocelulósica de origen arbóreo en Costa Rica
DOI:
https://doi.org/10.21829/myb.2020.2632066Palabras clave:
oferta de mercado, demanda de mercado, dendroenergía, energías renovablesResumen
En la última década, la biomasa se ha convertido en una opción de energía renovable; sin embargo, la ausencia de estudios que permitan entender su mercado limita su implementación. El presente estudio analizó la percepción de los actores que componen el mercado de la biomasa vegetal con fines energéticos desde las perspectivas de productores, intermediarios y consumidores. Se encuestaron 52 productores, 33 intermediarios y 55 demandantes de biomasa arbórea de la zona norte de Costa Rica, estudiando el mercado desde la perspectiva técnica, ambiental, financiera y social e identificando las variables que limitan el mercado. Los resultados mostraron que para los aspectos ambientales y sociales hay una similitud de percepción entre los tres sectores; sin embargo, en los aspectos financieros y técnicos existen diferencias significativas en las percepciones, específicamente en el precio de la biomasa, en la homogeneidad de esta y en los costos asociados, además de la competencia con otras fuentes de biomasa agroindustrial. Los análisis mostraron que la variabilidad de la biomasa en cuanto a presentación afecta en 40,5% del mercado, la variación de especies en 24,8%, el contenido de humedad en 10,6%, la disponibilidad de biomasa en el tiempo en 8,4%, la organización y estructuración del mercado en 8,9% y otras variables suman el restante 6,8%. Esto hace necesaria una organización en cuanto a la venta de la biomasa y la correspondiente articulación entre ofertantes y demandantes con la participación de los intermediarios para la viabilidad del mercado de biomasa en Costa Rica.
Descargas
Citas
Alimi, M., Rhif, A., & Rebai, A. (2017). Nonlinear dynamic of the renewable energy cycle transition in Tunisia: Evidence from smooth transition autoregressive models. International Journal of Hydrogen Energy, 42(13), 8670-8679. doi: 10.1016/j.ijhydene.2016.07.131 DOI: https://doi.org/10.1016/j.ijhydene.2016.07.131
Baul, T., Datta, D., & Alam, A. (2018). A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy, 114, 598-608, doi: 10.1016/j.enpol.2017.12.037 DOI: https://doi.org/10.1016/j.enpol.2017.12.037
Beluli, V. (2019). Smart beer production as a possibility for cyber-attack within the industrial process in automatic control. Procedia Computer Science, 158, 206-213, doi: 10.1016/j.procs.2019.09.043 DOI: https://doi.org/10.1016/j.procs.2019.09.043
Bulut, U., & Muratoglu, G. (2019). Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy Policy, 123, 240-250, doi: 10.1016/j.enpol.2018.08.057 DOI: https://doi.org/10.1016/j.enpol.2018.08.057
Cambero, C., Alexandre, M., & Sowlati, T. (2015). Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada. Resources, Conservation and Recyclin, 105(A), 59-72, doi: 10.1016/j.resconrec.2015.10.014 DOI: https://doi.org/10.1016/j.resconrec.2015.10.014
Chidanand, F. C., Sisodia, G., & Gopalan, S. (2019). A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids. Sustainable Cities and Society, 40, 735-745, doi: 10.1016/j.scs.2018.04.008 DOI: https://doi.org/10.1016/j.scs.2018.04.008
Cho, J., & Kim, J. (2019). Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops. Energy, 185, 527-40, doi: 10.1016/j.energy.2019.07.053 DOI: https://doi.org/10.1016/j.energy.2019.07.053
Cosentino, V., Favuzza, S., Graditi, G., Ippolito, M., Massaro, F., Sanseverino, E., & Zizz, G. (2012). Smart renewable generation for an islanded system. Technical and economic issues of future scenarios. Energy, 39(1), 196-204. doi: 10.1016/j.energy.2012.01.030 DOI: https://doi.org/10.1016/j.energy.2012.01.030
Farhar, B. (1998). Gender and renewable energy: Policy, analysis, and market implications. Renewable Energy, 15(1-4), 230-239, doi: 10.1016/S0960-1481(98)00164-5 DOI: https://doi.org/10.1016/S0960-1481(98)00164-5
Fortini, B., & Dye, K. (2017). At a global scale, do climate change threatened species also face a greater number of non-climatic threats? Global Ecology and Conservation, 11, 207-212, doi: 10.1016/j.gecco.2017.06.006 DOI: https://doi.org/10.1016/j.gecco.2017.06.006
Franklin-Johnson, E. F., & Canning, L. (2016). Resource duration as a managerial indicator for Circular Economy performance. Journal of Cleaner Production, 133, 589-598, doi, 10.1016/j.jclepro.2016.05.023 DOI: https://doi.org/10.1016/j.jclepro.2016.05.023
Gadaleta, M., Pellicciari, M., & Berselli, G. (2019). Optimization of the energy consumption of industrial robots for automatic code generation. Robotics and Computer-Integrated Manufacturing, 57, 452-464. doi: 10.1016/j.rcim.2018.12.020 DOI: https://doi.org/10.1016/j.rcim.2018.12.020
Gazijahani, F., & Salehi, J. (2018). Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach. Energy,161, 999-1015, doi: 10.1016/j.energy.2018.07.191 DOI: https://doi.org/10.1016/j.energy.2018.07.191
Hodges, G., Chapagain, B., Watcharaanantapong, D., Poudyal, N., Kline, K., & Dale, V. (2019). Opportunities and attitudes of private forest landowners in supplying woody biomass for renewable energy. Renewable and Sustainable Energy Reviews, 113, doi: 10.1016/j.rser.2019.06.012 DOI: https://doi.org/10.1016/j.rser.2019.06.012
Instituto Costarricense de Electricidad [ICE] (2015). Potencialidad de nuevas ernergías de producción eléctrica. San José, Costa Rica: ICE.
Kahrl, F., Su, Y., Tennigkeit, T., Yang, Y., & Xu, J. (2013). Large or small? Rethinking China’s forest bioenergy policies. Biomass and Bioenergy, 59, 84-91, doi: 10.1016/j.biombioe.2012.01.042 DOI: https://doi.org/10.1016/j.biombioe.2012.01.042
Koengkan, M., Fuinhas, J., & Marques, A. (2019). The effect of fiscal and financial incentive policies for renewable energy on CO2 emissions: the case for the Latin American region. Amsterdam: Academic Press. DOI: https://doi.org/10.1016/B978-0-12-815719-0.00005-X
Lee, L., & Yang, J. (2019). Global energy transitions and political systems. Renewable and Sustainable Energy Reviews, 115, doi: 10.1016/j.rser.2019.109370 DOI: https://doi.org/10.1016/j.rser.2019.109370
Lingcheng, K., Zhenning, Z., Jiaping, X., Jing, L., & Yuping, C. (2019). Multilateral agreement contract optimization of renewable energy power grid-connecting under uncertain supply and market demand. Computers & Industrial Engineering, 135, 689-701, doi: 10.1016/j.cie.2019.06.016 DOI: https://doi.org/10.1016/j.cie.2019.06.016
Mahidin, E., Mamat, M., Sani, M., Khoerunnisa, F., & Kadarohman, A. (2019). Target and demand for renewable energy across 10 ASEAN countries by 2040. The Electricity Journal, 32(10),8-20, doi: 10.1016/j.tej.2019.106670 DOI: https://doi.org/10.1016/j.tej.2019.106670
Manolis, N., Zagas, T., Karetsos, G., & Poravou, C. (2019). Ecological restrictions in forest biomass extraction for a sustainable renewable energy production. Renewable and Sustainable Energy Reviews, 110, 290-297, doi: 10.1016/j.rser.2019.04.078. DOI: https://doi.org/10.1016/j.rser.2019.04.078
Morseletto, P. (2020). Targets for a circular economy. Resources, Conservation and Recycling, 153,5-15 doi, 10.1016/j.resconrec.2019.104553. DOI: https://doi.org/10.1016/j.resconrec.2019.104553
Nematollahi, O., Hoghooghi, H., Rasti, M., & Sedaghat, A. (2016). Energy demands and renewable energy resources in the Middle Eas. Renewable and Sustainable Energy Reviews, 54, 1172-1181 DOI: https://doi.org/10.1016/j.rser.2015.10.058
Pang, X., Mörtberg, U., Sallnäs, O., Trubins, R., Nordström, E., & Böttcher, H. (2017). Habitat network assessment of forest bioenergy options using the landscape simulator LandSim – A case study of Kronoberg, southern Sweden. Ecological Modelling, 345, 99-112, doi: 10.1016/j.ecolmodel.2016.12.006 DOI: https://doi.org/10.1016/j.ecolmodel.2016.12.006
Popescu, G., Mieila, M., Nica, E., & Andrei, J. (2018). The emergence of the effects and determinants of the energy paradigm changes on European Union economy. Renewable and Sustainable Energy Reviews, 81, 768-774, Doi: 10.1016/j.rser.2017.08.055 DOI: https://doi.org/10.1016/j.rser.2017.08.055
Röder, M., Thiffault, E., Martínez-Alonso, C., Senez-Gagnon, F., Paradis, L., & Thornley, P. (2019). Understanding the timing and variation of greenhouse gas emissions of forest bioenergy systems. Biomass and Bioenergy, 121, 99-114, doi: 10.1016/j.biombioe.2018.12.019 DOI: https://doi.org/10.1016/j.biombioe.2018.12.019
Royston, S., Selby, J., & Shove, E. (2018). Invisible energy policies: A new agenda for energy demand reduction. Energy Policy, 123, 127-135.,doi: 10.1016/j.enpol.2018.08.052 DOI: https://doi.org/10.1016/j.enpol.2018.08.052
Simangunsong, B., Sitanggang, V., Manurung, E., Rahmadi, A., Moore, G., Aye, L., & Tambunan, A. (2017). Potential forest biomass resource as feedstock for bioenergy and its economic value in Indonesia. Forest Policy and Economics, 81, 10-17, doi: 10.1016/j.forpol.2017.03.022 DOI: https://doi.org/10.1016/j.forpol.2017.03.022
Specht, J., & Madlener, R. (2019). Energy Supplier 2.0: A conceptual business model for energy suppliers aggregating flexible distributed assets and policy issues raised. Energy Policy, 135,1-12, doi 10.1016/j.enpol.2019.110911 DOI: https://doi.org/10.1016/j.enpol.2019.110911
Ssempiira, J., Kissa, J., Nambuusi, B., Mukooyo, E., Opigo, J., Makumbi, F., . . ., & Vounatsou, P. (2018). Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in Uganda. Parasite Epidemiology and Control, 3(3), 1-11, doi: 10.1016/j.parepi.2018.e00070 DOI: https://doi.org/10.1016/j.parepi.2018.e00070
Tiwary, A., Spasova, S., & Williams, I. (2019). A community-scale hybrid energy system integrating biomass for localised solid waste and renewable energy solution: Evaluations in UK and Bulgaria. Renewable Energy, 39,960-967, doi: 10.1016/j.renene.2019.02.129 DOI: https://doi.org/10.1016/j.renene.2019.02.129
Valverde, J. C., Arias, D., Campos, R., Jiménez, M. F., & Brenes, L. (2020). Forest and agro-industrial residues and bioeconomy: perception of use in the energy market in Costa Rica. Energy Ecology and Environment, 5(5),1-12, doi: 10.1007/s40974-020-00172-4 DOI: https://doi.org/10.1007/s40974-020-00172-4
Verlie, B. (2019). “Climatic-affective atmospheres”: A conceptual tool for affective scholarship in a changing climate. Emotion, Space and Society, 33, 1-12, doi: 10.1016/j.emospa.2019.100623 DOI: https://doi.org/10.1016/j.emospa.2019.100623
Viviescas, C., Lima, L., Diuana, D., Vasquez, E., Ludovique, C., Silva, G., . . ., & Paredes, J. (2019). Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renewable and Sustainable Energy Reviews, 113, doi: 10.1016/j.rser.2019.06.039 DOI: https://doi.org/10.1016/j.rser.2019.06.039
Zheng, Y., Jenkins, B., Kornbluth, K., Kendall, A., & Træholt, C. (2018). Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty. Applied Energy, 230,836-844, doi: 10.1016/j.apenergy.2018.09.015 DOI: https://doi.org/10.1016/j.apenergy.2018.09.015
Publicado
Cómo citar
-
Resumen442
-
PDF294
-
LENS1
Número
Sección
Licencia
Derechos de autor 2020 Madera y Bosques
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.