Propiedades de curvas laminadas construidas con chapas vaporizadas con maderas de árboles de plantaciones de rápido crecimiento
DOI:
https://doi.org/10.21829/myb.2011.1721150Palabras clave:
Curvas laminadas, delaminación, chapas vaporizadas, cizallamiento, radio de curvaturaResumen
Las curvas laminadas fabricadas con chapas vaporizadas permiten obtener radios de curvatura más pequeños que cuando no se aplica este proceso. En este estudio, se presentan el comportamiento de madera de Alnus acuminata, Tectona grandis, Gmelina arborea, Terminalia oblonga, Alnus acuminata y Swietenia macrophylla provenientes de plantaciones de rápido crecimiento en la fabricación de curvaturas con radios de (4, 6, 8, 10, 12 y 14) cm. Fue posible obtener radios de curvaturas de 4 cm, a excepción de T. grandis de donde solo fue posible obtener radio de 6 cm. El proceso de vaporizado aumentó el contenido de humedad de la chapa en un rango de 3.3% a 10.2%. El adhesivo permite que el radio de la curva fabricada se mantenga en radios menores a 10 cm y en radios de 12 cm y 14 cm la curva tiende a abrirse (máximo 1%), para todas las especies, no obstante, la abertura se estabiliza al día 4 luego de fabricada. Las delaminaciones de las chapas se producen principalmente en los radios de 4 cm a 8 cm y se presentan con mayor incidente en la T. grandis y T. oblonga. La resistencia en cizallamiento de 7,5 MPa-11,2 MPa y no se alteró al someter a pruebas de envejecimiento, pero hay una mayor delaminación en todas las especies.
Descargas
Citas
ASTM Standard. 2003a. D 2395-02, Standard test methods for specific gravity of wood and wood-base materials.
ASTM Standard. 2003b. D 143-94,Test methods for small clear specimens of timber.
ASTM Standard. 2003c. D4442, Standard test methods for direct moisture content measurement of wood and wood-base materials.
ASTM Standard. 2003d. D 2559 Standard specification for adhesives for structural laminated wood products for use under exterior (wet Use) exposure conditions.
ASTM Standard. 2003e. D-905-03, Standard test method for strength properties of adhesive bonds in shear by compression loading.
Cornejo, J. and R. Baettig. 2009. Evolución del modulo de elasticidad longitudinal entre 10 y 100 oC en piezas de Pinus radiata usando una técnica no destructiva. Maderas Ciencia & Tecnología 11(2):153-160. DOI: https://doi.org/10.4067/S0718-221X2009000200006
Cousins, w.J. 1978. young`s modulus of hemicellulose as related to moisture content. wood Science Technology 12:161-167. DOI: https://doi.org/10.1007/BF00372862
Custódio, J., J. Broughton, H. Cruz and A. Hutchinson. 2008. A review of adhesion promotion techniques for solid timber substrates. The Journal of Adhesion 84:502-529. DOI: https://doi.org/10.1080/00218460802161558
Chen, C. and F.F. wangaard. 1968. wettability and the hysteresis effect in the sorption of water vapor by wood. wood Science Technology 2:177-187. DOI: https://doi.org/10.1007/BF00350907
Davis, E.M. 1962. Machining and related characteristics of United States hardwoods. Tech. Bull. 1267. USDA Forest Serv., U.S. Gov. Printing Office, washington DC. 68 p
Gardner, D.J. 2006. Adhesion mechanisms of durable wood adhesivebonbs. In Stokke, D.D., Groon, L.H. Cellolosic cell wall. Blackwell Publishing CRC Press, USA, 2006
Hepworth, D.G, J.F. Vincent, G. Stringer and G. Jeronimidis. 2002. Variations in the morphology of wood structure can explain why hardwood species of similar sensity have very different resistances to impact and compressive loading. Philosophical Transactions of Royal Society A 360 (1791):255-272. DOI: https://doi.org/10.1098/rsta.2001.0927
Kärenlampi, P.P. 2005. Viscoplasticity of steamed wood. Mechanics of TimeDependent Materials 9:161-172. DOI: https://doi.org/10.1007/s11043-005-1086-9
Kishino, M. and T. Nakano. 2004. Artificial weathering of tropical woods. Part 1: Changes in wettability. Holzforschung 58:552-557. DOI: https://doi.org/10.1515/HF.2004.084
Lam, F. 2001. Modern structural wood products. Progress in Structural Engineering and Materials 3(3):238-245. DOI: https://doi.org/10.1002/pse.79
Mantanis, G.I. and R.A. young. 1997. wetting of wood. wood Science Technology 31:339-353. DOI: https://doi.org/10.1007/s002260050041
Martínez, J.L. and E. Martínez D. 2008. Laminado de 34 tipos de madera de México: radios mínimos que se pueden obtener con cada una de ellas. GDM 360°. Accesed June 18th, 2008. Available online: http://www. mexicandesign.com/revista/doblado_maderas.htm
Moya, R. and L.D. Pérez. 2008. Effect of physical and chemical soil properties on wood characteristics of Tectona grandis plantations in Costa Rica. Journal of Tropical Forest Science 20:47-155.
Moya, R. and M. Tomazello. 2008. Variation in the wood anatomical structure of Gmelina arborea trees at different ecological conditions in Costa Rica. Revista Biología Tropical 56:689-704.
Peck, E. 1955. Bending solid wood to form. U. S. Department of Agriculture, Forest Service. Agriculture Handbook No. 125
Pereira, H., J. Graça and J.C. Rodrigues. 2003. wood chemistry in relation to quality. In: Barnett, J.R., Jeronimidis, G. wood quality and its biological basis. Blackwell Publishing CRC Press, USA. DOI: https://doi.org/10.1002/chin.200446298
Piotto, D., F. Montagnini, L. Ugalde and M. Kanninen. 2003. Performance of forest plantations in small and medium sized farms in the Atlantic lowlands of Costa Rica. Forest Ecology and Management 175: 195-204. DOI: https://doi.org/10.1016/S0378-1127(02)00127-5
Rice, R.w. and J. Lucas. 2003. The effect of moisture content and bending rate on the work required to bend solid red oak. Forest Products Journal 53(2):71-77.
Salmén, L. 1984. Viscoelastic properties of in situ lignin under water-saturated conditions. Journal Material Science. 19:3090-3096. DOI: https://doi.org/10.1007/BF01026988
Sernek, M., M. Boonstra, A. Pizzi, A. Despres and P. Gérardin. 2008. Bonding performance of heat treated wood with structural adhesives. Holz als Roh-und werkstoff 63:173-180 DOI: https://doi.org/10.1007/s00107-007-0218-0
Stevens, w. and N. Turner. 1970. wood bending handbook. Ministry of Technology. London, England
Vick, C.B. and E.A. Okkonen. 1998. Strength and durability of one part polyurethane adhesive bonds to wood. Forest Products Journal 48(11/12):71-76.
Vick, C.B. and E.A. Okkonen. 2000. Durability of one-part polyurethane bonds to wood improved by HMR coupling agent. Forest Products Journal 50(10):69-75.
wagenführ, A., R. Buchelt and A. Pfriem. 2006. Material behavior of veneer during multidimensional moulding. Journal of wood Science 64:83-89. DOI: https://doi.org/10.1007/s00107-005-0008-5
Wu, Z., T. Furuno and B. Zhang. 1998. Properties of curved laminated veneer lumber made from fastgrowing species with radiofrequency heating for use in furniture. Journal of wood Science 44:275-281. DOI: https://doi.org/10.1007/BF00581307
Wu, Z. and T. Furuno. 1999. Stress distributions and failure types of curved laminated veneer lumber for use in furniture under loading. Journal of wood Science 44:134-142. DOI: https://doi.org/10.1007/BF01192330
Wu, Z., T. Furuno and H. yoshihara. 1999. Calculation models of pressure and position of laminated veneer lumber on molds during pressing. Journal of wood Science 45:213-220. DOI: https://doi.org/10.1007/BF01177728
Widsten, P., F. Gutowski, S. Li, T. Cerra, S. Molenaar, M. Spicer. (2006) Factors influencing timber gluability with one-part polyurethanes-studied with nine Australian timber species. Holzforshung 60:423-428. DOI: https://doi.org/10.1515/HF.2006.066
Publicado
Cómo citar
-
Resumen532
-
PDF232
Número
Sección
Licencia
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.