Physical-mechanical alterations in Qualea paraensis wood after heat treatment

Autores/as

DOI:

https://doi.org/10.21829/myb.2021.2722176

Palabras clave:

wood density, tropical wood, mass loss, modulus of rupture, heat treatment

Resumen

The objective was to analyze the effect of heat treatments on the physical and mechanical properties of Qualea paraensis wood. Test specimens from 5 lots of wood were submitted to heat treatments using temperatures of 180 °C and 200 °C with periods of 2 h and 4 h. Density (ρa), mass loss (PM), equilibrium moisture content (UE), longitudinal (βl), radial (βr) and tangential (βt) shrinkage, volumetric shrinkage (βv) and anisotropic factor (fa) were determined. Mechanically, the wood was evaluated for strength and stiffness in the tests of static bending (fM and EM) and compression parallel to the fibers (fc0 and Ec0). After the heat treatments, the values of ρ12% increased, on average, by 7.72% and the UE was reduced by 24.3%. The highest values of PM (3.67%) were observed for the exposure time of 2 hours at a temperature of 200 °C. With this treatment, the lowest values of βt (5.73%) and βv (9.69%) were obtained. The thermal treatments increased the bulk density, reduced the equilibrium moisture content, and increased the dimensional stability of the wood. In most heat treatments, a reduction in strength and an increase in stiffness to static bending was observed. There was an increase in strength and stiffness to compression parallel to the grain in all combinations of time and temperature. The greatest dimensional stability with less loss of strength to static bending and parallel compression were obtained with the treatment at 200 °C and time of 2 h.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Dayane Targino de Medeiros,

Universidade Federal de Lavras

Programa de Pós-Graduação em Ciência e Tecnologia da Madeira

Felipe Gomes Batista,

Universidade Federal de Lavras

Programa de Pós-Graduação em Ciência e Tecnologia da Madeira

Rafael Rodolfo de Melo,

Universidade Federal Rural do Semi-Árido

Departamento de Ciências Agronômicas e Florestais

Adriano Reis Prazeres Mascarenhas,

Universidade Federal de Lavras

Programa de Pós-Graduação em Ciência e Tecnologia da Madeira

Talita Dantas Pedrosa,

Universidade Federal Rural do Semi-Árido

Departamento de Engenharia e Ciências Ambien-tais. Mossoró

Citas

Amirou, S., Pizzi, A., & Delmotte, L. (2020). Investigations of mechanical properties and chemical changes occurring during welding of thermally modified ash wood. Journal of Adhesion Science and Technology, 34(1), 13-24. doi: 10.1080/01694243.2019.1659569 DOI: https://doi.org/10.1080/01694243.2019.1659569

Anjos, F. P., & Sousa, A. M. L. (2015). Equilibrium moisture in thermal rectification wood of cupiúba in the amazon region. Biota Amazônia, 5(1), 99-104. doi: 10.18561/2179-5746/biotaamazonia.v5n1p99-104 DOI: https://doi.org/10.18561/2179-5746/biotaamazonia.v5n1p99-104

Araujo, V., Vasconcelos, J., Cortez-Barbosa, J., Morales, E., Christoforo, A., Gava, M., Lahr, F., & Garcia, J. (2020). Wood consumption and fixations of carbon dioxide and carbon from timber housing techniques: A Brazilian panorama. Energy and Buildings, 216(1), 109960. doi: 10.1016/j.enbuild.2020.109960 DOI: https://doi.org/10.1016/j.enbuild.2020.109960

Associação Brasileira de Normas Técnicas [ABNT] (1997). NBR 7190: Projeto de estruturas de madeira. São Paulo.

Batista, D.C. (2019). Thermal treatment, heat treatment or thermal modification? Ciência Florestal, 29(1), 463-480. doi: 10.5902/1980509822577 DOI: https://doi.org/10.5902/1980509822577

Boonstra, M. J., Acker, J. V., Tjeerdsma B. F., & Kegel E. V. (2007). Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science, 64(1), 679-690. doi: 10.1051/forest:2007048 DOI: https://doi.org/10.1051/forest:2007048

Cabalová, I., Kacik, F., Lagana, R., Vybohová, E., Bubeníková, T., Canová, I., & Durkovic, J. (2018). Effect of thermal treatment on the chemical, physical and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources, 13(1), 157-170. doi: 10.15376/biores.13.1.157-170 DOI: https://doi.org/10.15376/biores.13.1.157-170

Cademartori, P. H. G., Schneid, E., Gatto, D.A., Beltrame, R., & Stagerlin, D.M. (2012). Modification of static bending strength properties of Eucalyptus grandis heattreated wood. Materials Research, 15(6), 922-927. doi: 10.1590/S1516-14392012005000136 DOI: https://doi.org/10.1590/S1516-14392012005000136

Candelier, K., Thevenon, M. F., Petrissans, A., Dumarcay, S., Gerardin, P., & Petrissans, M. (2016). Control of wood termal treatment and its effects on decay resistance: a review. Annals of Forest Science, 73(1), 571-583. doi: 10.1007/s13595-016-0541-x DOI: https://doi.org/10.1007/s13595-016-0541-x

Cardoso, C.C., Moutinho, V. H. P., Melo, L. O., Sousa, L. K. V. S., & Souza, M.R. (2012). Physical and mechanical characterization of Amazon wood with technological potential for marketing. Amazonian Journal of Agricultural and Environmental Sciences, 55(3), 176-183. doi: 10x4322:ocax2012x053 DOI: https://doi.org/10.4322/rca.2012.053

Carvalho, A. G., Zanuncio, A. J. V., Silva, C. M. S., Carneiro, A. C. O., & Paula, M. O. (2017). Resonance method for predicting the mechanical properties of heat-treated Eucalyptus urophylla and Pinus oocarpa wood. Revista Matéria, 22(1), e11772. doi: 10.1590/s1517-707620170001.0104. DOI: https://doi.org/10.1590/s1517-707620170001.0104

Cerre, J. C., Gérard, J., Guibal, D., Paradis, S. (2017). Tropical timber atlas: technological characteristics and uses. Versailles, França: Quae.

Christoforo, A. L., Almeida, D.H., Varanda, L. D., Panzera, T. H., & Lahr, F. A. R. (2020) Estimation of wood toughness in brazilian tropical tree species. Engenharia Agrícola, 40(2), 232-237. 10.1590/1809-4430-Eng.Agric.v40n2p232-237/2020 DOI: https://doi.org/10.1590/1809-4430-eng.agric.v40n2p232-237/2020

Comisión Panamericana de Normas Técnicas [COPANT] (1972a). COPANT 460: Método de determinación de la humedad. La Paz.

Comisión Panamericana de Normas Técnicas [COPANT] (1972b). COPANT 461: Método de determinación del peso específico aparente. La Paz.

Comisión Panamericana de Normas Técnicas [COPANT] (1972c). COPANT 462: Método de determinación de la contracción. La Paz.

Comisión Panamericana de Normas Técnicas [COPANT] (1972d). COPANT 464: Método de determinación de la compressión axil o paralela al grano. La Paz.

Comisión Panamericana de Normas Técnicas [COPANT] (1972e). COPANT 555: Método de ensayo de flexión estática. La Paz.

Conte, B., Missio, A. L., Pertuzzatti, A., Cademartori, P.H.G., & Gatto, D. A. (2014). Physical and colorimetric properties of Pinus elliottii var. elliottii thermally treated wood. Scientia Forestalis, 42(104), 555-563.

Dittomaso, G., Gaff, M., Kacik, F., Sikora, A., Sethy, A., Corleto, R., Razaei, F., Kaplan, L., Kubs, J., Das, S., Kamboj, G., Gasparik, M., Sedivka, P., Hysek, S., Macku, J., & Sedlecky, M. (2020). Interaction of techinical and technological factors on qualitative and energy/eclogical/economic indicators in the production and processing of thermally modified merbau wood. Journal of Cleaner Production, 252(1), 119793. doi: 10.1016/j.jclepro.2019.119793 DOI: https://doi.org/10.1016/j.jclepro.2019.119793

Faggin, J.M., & Behagel, J.H. (2017). Translating sustainable forest management from the global to the domestic sphere: The case of Brazil. Forest Policy and Economics, 85(1), 22-31. 10.1016/j.forpol.2017.08.012 DOI: https://doi.org/10.1016/j.forpol.2017.08.012

Ferreira, M. D., Melo, R. R., Zaque, L. A. M., & Stangerlin, D.M. (2019). Effect of heat treatment on physical and mechanical properties of Hymenolobium petraeum wood. Tecnologia em Metalurgia, Materiais e Mineração, 16(1), 3-7. doi: 10.4322/2176-1523.20191297 DOI: https://doi.org/10.4322/2176-1523.20191297

Gasson, P., Cartwright, C., & Leme, C. L. D. (2017). Anatomical changes to the wood of Croton sonderianus (Euphorbiaceae) when charred at different temperatures. IAWA Journal, 38(1), 117-123. doi: 10.1163/22941932-20170161 DOI: https://doi.org/10.1163/22941932-20170161

Gaui, T. D., Costa, F. R. C., Souza, F. C., Amaral, M. R. M., Carvalho, D. C., Reis, F. Q., & Higuchi, N. (2019). Long-term effect of selective logging on floristic composition: A 25 year experimente in the Brazilian Amazon. Forest Ecology and Management, 440(15), 258-266. doi: 10.1016/j.foreco.2019.02.033 DOI: https://doi.org/10.1016/j.foreco.2019.02.033

Gérardin, P. (2016). New alternatives for wood preservation based on thermal and chemical modification of wood - a review. Annals of Forest Science, 73(1), 559-570. doi: 10.1007/s13595-015-0531-4 DOI: https://doi.org/10.1007/s13595-015-0531-4

Gonçalves, T.A.P., Marcati, C. R., & Scheel-Ybert, R. (2012). The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapiria guianensis, Vochysia tucanorum and Pouteria torta from the Brazilian Cerrado. IAWA Journal, 33(1), 73-90. doi: 10.1163/22941932-90000081 DOI: https://doi.org/10.1163/22941932-90000081

Hamada, J., Pétrissans, A., Mothe, F., Ruelle, J., Pétrissans, M., & Gérardin, P. (2015). Variations in the natural density of European oak wood affect thermal degradation during thermal modification. Annals of Forest Science, 73(1), 277-286. doi: 10.1007/s13595-015-0499-0 DOI: https://doi.org/10.1007/s13595-015-0499-0

Hein, P. R. G., & Brancheriau, L. (2018). Comparision between three-point and four-point flexural tests to determine wood strength of Eucalyptus specimens. Maderas. Ciencia y Tecnologia, 20(3), 333-342. doi: 10.4067/S0718-221X2018005003401 DOI: https://doi.org/10.4067/S0718-221X2018005003401

Johansson, D., & Morén, T. (2006). The potential of colour meansurement for strength prediction of thermally treated wood. Holz als Roh- und Werkstoff, 64(1): 104-110. doi: 10.1007/s00107-005-0082-8 DOI: https://doi.org/10.1007/s00107-005-0082-8

Dias Júnior, A. F., Lana, A. Q., Santos, P. V., Carvalho, A. M., Souza, N. D., & Brito, J. O. (2015). Physical properties and surface finish of heat treated eucalyptus wood. Amazonian Journal of Agricultural and Environmental Sciences, 58(3), 270-276. doi: 10.4322/rca.2010 DOI: https://doi.org/10.4322/rca.2010

Kacik, F., Luptáková, J., Nasswettrová, A., Kaciková, D., & Vacek, V. (2016). Chemical alterations of pine wood lignin during heat sterilization. BioResources, 11(2), 3442-3452. doi: 10.15376/biores.11.2.3442-3452 DOI: https://doi.org/10.15376/biores.11.2.3442-3452

Kubovsky, I., Kaciková, D., & Kacik, F. (2020). Structural changes of oak main components caused by thermal modification. Polymers, 12(2), 1-12. doi: 10.3390/polym12020485 DOI: https://doi.org/10.3390/polym12020485

Lazarotto, M., Cava, S. D. S., Beltrame, R., Gatto, D. A., Missio, A. L., Gomes, L. G., & Mattoso, T. R. (2016). Biological resistance and colorimetry of heat-treated wood of two eucalyptus species. Revista Árvore, 40(1), 135-145. doi: 10.1590/0100-67622016000100015 DOI: https://doi.org/10.1590/0100-67622016000100015

Lengowski, E. C., Muñiz, G.I.B., Klock, U., & Nisgoski, S. (2018). Potential use NIR and visible spectroscopy to analyze chemical properties on thermally treated wood. Maderas. Ciencia y Tecnologia, 20(4), 627-640. doi: 10.4067/S0718-221X2018005041001 DOI: https://doi.org/10.4067/S0718-221X2018005041001

Mania, P., Molinski, W., Roszyk, E., & Górska, M. (2020). Optimization of spruce (Picea abies L.) wood thermal treatment temperature to improve its acoustic properties. BioResources, 15(1), 505-516. doi: 10.15376/biores.15.1.505-516 DOI: https://doi.org/10.15376/biores.15.1.505-516

Melo, R.R., Dacroce, J. M. F., Rodolfo Jr, F., Lisboa, G. S., & França, L.C.J. (2019a) Lumber yield of four native forest species of the Amazon Region. Floresta e Ambiente, 26(1), e20160311. doi: 10.1590/2179-8087.031116 DOI: https://doi.org/10.1590/2179-8087.031116

Melo, R. R., Mota, A. G. F., Sabino, M., Stangerlin, D. M., Batista, F. G., & Souza, M. J. (2019b). Effect of Qualea paraensis wood thermal treatment to termite attack resistance. Revista de Ciências Agrárias, 42(3), 786-791. doi: 10.19084/rca.17079

Menezes, W. M., Santini, E. J., Souza, J. T., Gatto, D. A., & Haselein, C. R. (2014). Thermal modification on the physical properties of wood. Ciência Rural, 44(6), 1019-1024. doi: 10.1590/S0103-84782014000600011 DOI: https://doi.org/10.1590/S0103-84782014000600011

Modes, K. S., Santini, E. J., Vivian, M. A., & Haselein, C. R. (2017). Effect of heat treatment on mechanical properties of Pinus taeda and Eucalyptus grandis woods. Ciência Florestal, 27(1), 291-302. doi: 10.5902/1980509826467 DOI: https://doi.org/10.5902/1980509826467

Nisgoski, S., Muñiz, G. I. B., Batista, F. R. R., & Mölleken, R. E. (2014). Influence of carbonization temperature on the anatomical characteristics of Ocotea porosa (Nees & Mart. Ex Nees) L. Barroso. Wood Science and Technology, 48(2), 301-309. doi: 10.1007/s00226-013-0602-3 DOI: https://doi.org/10.1007/s00226-013-0602-3

Palermo, G. P. M., Latorraca, J. V. F., Moura, L. F., Nolasco, A.M., Carvalho, A. M., & Garcia, R. A. (2014). Surface roughness of heat-treated Eucalyptus grandis wood. Maderas. Ciencia y Tecnologia, 16(1), 3-12. doi: 10.4067/S0718-221X2014005000001 DOI: https://doi.org/10.4067/S0718-221X2014005000001

Patera, A., Bulcke, J. V., Boone, M. N., Derome, D., & Carmeliet, J. (2018). Swelling interactions of earlywood and latewood across a growth ring: global and local deformations. Wood Science and Technology, 52(1), 91-114. doi: 10.1007/s00226-017-0960-3 DOI: https://doi.org/10.1007/s00226-017-0960-3

Pereira, A.F. (2013). Madeiras Brasileiras: Guia de combinação e substituição. São Paulo, Brasil: Editora Blucher.

Pratiwi, L. A., Darmawan, W., Priadi, T., George, B., Merlin, A., Gérardin, C., & Dumarçay, S., Gérardin, P. (2019). Characterization of thermally modified short and long rotation teaks and the effects on coating performance. Maderas. Ciencia y Tecnología, 21(2), 209-222. doi: 10.4067/S0718-221X2019005000208 DOI: https://doi.org/10.4067/S0718-221X2019005000208

Reis, A. R. S., Abreu, J. L. L., Pinho, D. M., Lisboa, P. L. B., & Urbinati, C. V. (2014). Wood anatomy characterization of mandioquiera (Qualea Aubl.) sold in timber markets of the state of Pará. Enciclopédia biosfera, 10(19), 448-462.

Reis, P. C. M. R., Reis, L. P., Souza, A. L., Carvalho, A. M. M. L., Mazzei, L., Reis, A. R. S., & Torres, C. M. M. E. (2019). Clustering of Amazon wood species based on physical and mechanical properties. Ciência Florestal, 29(1), 336-346. doi: 10.5902/1980509828114 DOI: https://doi.org/10.5902/1980509828114

Ribeiro, E.S., Souza, R.A.T.M., Paula, M.H., Mesquita, R.R.S., Moreira, E.L., & Fazion, H. (2016). Forest species commercially by Mato Grosso state. Biodiversidade, 15(2), 2-20.

Rowell, R.M., Ibach, R.E., McSweeny, J., & Nilsson, T. (2009). Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Material Science and Engineering, 4(1), 14-22. doi: 10.1080/17480270903261339 DOI: https://doi.org/10.1080/17480270903261339

Sargent, R. (2019). Evaluating dimensional stability in solid wood: a review of current practice. Journal of Wood Science, 65(36), 1-11. doi: 10.1186/s10086-019-1817-1 DOI: https://doi.org/10.1186/s10086-019-1817-1

Shukla, S.R. (2019). Evaluation of dimensional stability, surface roughness, colour, flexural properties and decay resistance of thermally modified Acacia auriculiformis. Maderas. Ciencia y Tecnologia, 21(4), 433-466. doi: 10.4067/S0718-221X2019005000401 DOI: https://doi.org/10.4067/S0718-221X2019005000401

Silva, P. H., Gomide, L. R., Figueiredo, E. O., Carvalho, L. M. T., & Ferraz-Filho, A. C. (2018). Optimal selective logging regime and log landing location models: a case study in the Amazon forest. Acta Amazonica, 48(1), 18-27. doi: 10.1590/1809-4392201603113 DOI: https://doi.org/10.1590/1809-4392201603113

Silva, E. F., Silva, G. F., Figueiredo, E. O., Mendonça, A. R., Santana, C. J. O., Fiedler, N. C., Silva, J. P. M., Aguiar, M. O. A., & Santos, J. S. (2020). Optimized forest planning: allocation of log storage yards in the Amazonian sustainable forest management area. Forest Ecology and Management, 472(15), 118231. doi: 10.1016/j.foreco.2020.118231 DOI: https://doi.org/10.1016/j.foreco.2020.118231

Soares-Filho, B. S., Oliveira, A. S., Rajão, R. G., Oliveira, U., Santos, L. R. S., Assunção, A.C., Rodrigues, H. O., Merry, F., & Costa, W. L. (2017). Economic Valuation of Changes in the Amazon Forest Area: Economic Losses by Fires to Sustainable Timber Production. Belo Horizonte, Brasil: Centro de Sensoriamento Remoto/UFMG.

Stragliotto, M. C., Freitas, J. M., Oliveira, A. C., & Pereira, B. L. C. (2019). Yield in sawn wood and residue utilization of Qualea paraensis Ducke and Erisma uncinatum Warm. Floresta, 49(2), 257-266. doi: 10.5380/rf.v49 i2.57284 DOI: https://doi.org/10.5380/rf.v49i2.57284

Takeshita, S., & Jankowsky, I. P. (2015). Reduction in dimensional changes of Jatobá (Hymenaea sp.) and Muiracatiara (Astronium sp.) submitted to additional heat treatment. Scientia Forestalis, 43(106), 345-352.

Wolenski, A. R. V., Peixoto, R. G., Fedotova, V., Christoforo, A. L., & Lahr, F. A. R. (2020a). Shear strength estimation model for tropical wood species. Wood Research, (65)1, 175-182. doi: 10.37763/wr.1336-4561/65.1.175182 DOI: https://doi.org/10.37763/wr.1336-4561/65.1.175182

Wolenski, A. R. V., Almeida, J. P. B., Christoforo, A. L., Lahr, F. A. R., & Peixoto, R. G. (2020b). Estimation model of mechanical properties from the compressive strength values. Maderas, Ciencia y Tecnologia, 22(4), 483-494. 10.4067/S0718-221X2020005000407 DOI: https://doi.org/10.4067/S0718-221X2020005000407

Wolenski, A. R. V., Peixoto, R.G., Christoforo, A. L., Lahr, F. A. R., & Dias, A. M. P.G. (2019). Estimation of the characteristic tensile strength of the wood in the parallel direction to the grains through of probability models. Matéria, 24(4), e-12531. doi: 10.1590/S1517-707620190004.0856 DOI: https://doi.org/10.1590/s1517-707620190004.0856

Zanuncio, A. J., Carvalho, A. G., Carneiro, A. C. O., Filho, M. T., Valenzuela, P., Gacitúa, W., & Colodette, J. L. (2018). Anatomical, ultrastructural, physical and mechanical wood properties of two-year-old Eucalyptus grandis × Eucalyptus urophylla clones. Revista Árvore, 42(2), e420201. doi: 10.1590/1806-90882018000200001 DOI: https://doi.org/10.1590/1806-90882018000200001

Descargas

Publicado

2021-12-22

Cómo citar

Medeiros, D. T. de, Batista, F. G., Melo, R. R. de, Mascarenhas, A. R. P., & Pedrosa, T. D. (2021). Physical-mechanical alterations in Qualea paraensis wood after heat treatment. Madera Y Bosques, 27(2), e2722176. https://doi.org/10.21829/myb.2021.2722176
Metrics
Vistas/Descargas
  • Resumen
    448
  • LENS
    12
  • PDF
    145

Número

Sección

Artículos Científicos

Métrica

Artículos más leídos del mismo autor/a