Almacenes de carbono en un paisaje de humedal cárstico a lo largo de un corredor transversal costero de la Península de Yucatán

Autores/as

DOI:

https://doi.org/10.21829/myb.2021.2742425

Palabras clave:

biomasa aérea, carbono azul, manglares, marismas, pastos marinos, sedimentos

Resumen

Los humedales costeros son dinámicos y su variación depende de la intensidad e interacción entre los procesos continentales y marinos que los influencian. Estos humedales son altamente productivos y sustentan servicios ambientales relevantes para la mitigación de los efectos del cambio climático antropogénico. Considerando un enfoque paisajístico de conectividad entre los procesos costeros, se llevó a cabo la evaluación de los almacenes de C aéreo y subterráneo en ocho humedales. Estos conforman un paisaje continuo en la costa norte de Yucatán denominado corredor transversal costero. El almacén de C para el corredor correspondió a 3 837 160 Mg de C. El humedal de manglar chaparro presentó el mayor almacén de carbono total por unidad de área (371 Mg C ha-1), siendo también el dominante en extensión. El gradiente en el almacén de C aéreo entre humedales obedeció a patrones de inundación, elevación topográfica, salinidad intersticial y la tolerancia específica de las especies. Los manglares almacenaron más carbono por hectárea que los humedales dominados por herbáceas emergentes y por la vegetación sumergida. Los primeros estarían dominados por procesos de producción y acumulación de C, mientras que en los segundos la producción y el reciclamiento serían los más importantes, repercutiendo en una menor acumulación de C. Los resultados contribuyen al entendimiento de los patrones de almacenamiento de C en un gradiente salino y topográfico en paisajes integrados por humedales costeros cársticos. Los resultados podrán utilizarse para evaluar las afectaciones regionales potenciales en el mediano y largo plazo ocasionados por impactos naturales y antropogénicos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sara María Morales-Ojeda,

Centro de Investigación y Estudios Avanzados

Mérida

Dr. Jorge Herrera,

Centro de Investigación y Estudios Avanzados

Mérida

Citas

Adame, M. F., Brown, C. J., Bejarano, M., Herrera-Silveira, J. A., Ezcurra, P., Kauffman, J. B., & Birdsey, R. (2018). The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conservation Letters, 11(4), 1-9. doi: 10.1111/conl.12445 DOI: https://doi.org/10.1111/conl.12445

Adame, M. F., Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52-60. doi:10.1016/j.foreco.2017.08.016 DOI: https://doi.org/10.1016/j.foreco.2017.08.016

Adame, M. F., Kauffman, J. B., Medina, I., Gamboa, J. N., Torres, O., Caamal, J. P., Reza, M., & Herrera-Silveira, J. A. (2013). Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE, 8(2), 1-13. doi: 10.1371/journal.pone.0056569 DOI: https://doi.org/10.1371/journal.pone.0056569

Aspila, K. I., Agemian, H. & Chau, A. S., (1976). A semi-automated method for the determination of organic, inorganic and total phosphate in sediments. Analyst, 101, 187-1 97. doi.org/10.1039/AN9760100187 DOI: https://doi.org/10.1039/an9760100187

Bai, J., Zhang, G., Zhao, Q., Lu, Q., Jia, J., Cui, B., & Liu, X. (2016). Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Scientific Reports, 6, 1-12. doi:10.1038/srep34835 DOI: https://doi.org/10.1038/srep34835

Ball, M. C. (1988). Ecophysiology of mangroves. Trees, 2, 129-142. doi.org/10.1007/BF00196018 DOI: https://doi.org/10.1007/BF00196018

Barbier, E. B. (2011). Wetlands as natural assets. Hydrological Sciences Journal, 56(8), 1360-1373. doi: 10.1080/02626667.2011.629787 DOI: https://doi.org/10.1080/02626667.2011.629787

Battaglia, L. L., Woodrey, M. S., Peterson, M. S., Dillon, K. S. & Visser, J. M. (2012). Wetlands of the Northern Gulf Coast. En D. P. Batzer & A. H. Baldwin (Eds.), Wetland habitats of North America: Ecology and conservation issues (pp. 75-88). Berkeley, California: University of California Press.

Baustian, M. M., Stagg, C. L., Perry, C. L., Moss, L. C., Carruthers, T. J. B., & Mead, A. (2017). Relationships between salinity and short term soil carbon accumulation rates from marsh types across a landscape in the Mississippi river delta. Wetlands, 37, 313-324. doi:10.1007/s13157-016-0871-3 DOI: https://doi.org/10.1007/s13157-016-0871-3

Bautista, F., Palacio-Aponte, G., Quintana, P., & Zinck, J. P. (2011). Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology, 135(3-4), 308-321. DOI: https://doi.org/10.1016/j.geomorph.2011.02.014

Berga, M., Székely, A. J., & Langenheder, S. (2012). Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE, 7(5). 1-5. doi:10.1371/journal.pone.0036959 DOI: https://doi.org/10.1371/journal.pone.0036959

Bornette, G., Amoros, C., & Lamouroux, N. (1998). Aquatic plant diversity in riverine wetlands: The role of connectivity. Freshwater Biology, 39(2), 267-283. doi:10.1046/j.1365-2427.1998.00273.x DOI: https://doi.org/10.1046/j.1365-2427.1998.00273.x

Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26, 889-916. 10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2 DOI: https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2

Calhoun, A. J., Mushet, D. M., Bell, K. P., Boix, D., Fitzsimons, J. A., & Isselin-Nondedeu, F. (2017). Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biological Conservation, 21, 3-11. 10.1016/j.biocon.2016.11.024. DOI: https://doi.org/10.1016/j.biocon.2016.11.024

Campbell, J. E., Lacey, E. A., Decker, R. A., Crooks, S., & Fourqurean, J. W. (2015). Carbon Storage in Seagrass Beds of Abu Dhabi, United Arab Emirates. Estuaries and Coasts, 38(1), 242–251. doi:10.1007/s12237-014-9802-9 DOI: https://doi.org/10.1007/s12237-014-9802-9

Castañeda-Moya, E., Twilley, R. R. & Rivera-Monroy, V. H. (2013). Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Forest Ecology and Management, 307(1), 226–241. doi.org/10.1016/j.foreco.2013.07.011 DOI: https://doi.org/10.1016/j.foreco.2013.07.011

Catherine E Lovelock, William H Schlesinger, and Brian R Silliman

Catherine E Lovelock, William H Schlesinger, and Brian R Silliman

Chmura G. L., Anisfeld, S., Cahoon, D., & Lynch J. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4), 1-12. doi:10.1029/2002GB001917 DOI: https://doi.org/10.1029/2002GB001917

Choi, Y., Hsieh, Y., & Wang, Y. (2001). Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida' Evidence from carbon isotopes. Global biogeochemical cycles, 15(2), 311-319. DOI: https://doi.org/10.1029/2000GB001308

Cohen, M., Creed, I., Alexander, L., Basu, N., Calhoun, A., Craft, C., D'Amico, E., Dekeyser, E., Fowler, L., Golden, H., Jawitz, J., Kalla, P., Kirkman, L., Lane, C., Lang, M., Leibowitz, S., Lewis, D., Marton, J., Mclaughlin, D., & Walls, S. (2016). Do geographically isolated wetlands influence landscape functions?. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 1978-1986. doi.org/10.1073/pnas.1512650113 DOI: https://doi.org/10.1073/pnas.1512650113

Costanza, R., d’Arge, R., de Groot, R., Farberk, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature. 387(15), 253-260. 10.1016/S0921-8009(98)00020-2 DOI: https://doi.org/10.1038/387253a0

Craft, C. (2007). Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S tidal marshes. Limnology and Oceanography, 52(3), 1220-1230. doi:10.4319/lo.2007.52.3.1220 DOI: https://doi.org/10.4319/lo.2007.52.3.1220

Creed, I. F., Lane, C. R., Serran, J. N., Alexander, L. C., Basu, N. B., Calhoun, A. J. K., Christensen, J. R., Cohen, M. J., Craft, C., D'Amico, E., DeKeyser, E., Fowler, L., Golden, H. E., Jawitz, J. W., Kalla, P., Kirkman, L K., Lang, M., Leibowitz, S. G., Lewis, D. B., Marton, J., McLaughlin, D. L., Raanan-Kiperwas, H., Rains, M. C., Rains, K. C., & Smith, L. (2017). Enhancing protection for vulnerable waters. Natural Geosciences, 10(11), 809-815. DOI: https://doi.org/10.1038/ngeo3041

De Deyn, G. B., Cornelissen, J. H. C., & Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11(5), 516-531. doi:10.1111/j.1461-0248.2008.01164.x DOI: https://doi.org/10.1111/j.1461-0248.2008.01164.x

Donato, D.C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geosciences, 4(5), 293-97. DOI: https://doi.org/10.1038/ngeo1123

Drake, K., Halifax, H., Adamowicz, S. C., & Craft, C. (2015). Carbon Sequestration in Tidal Salt Marshes of the Northeast United States. Environmental Management, 56(4), 998-1008. doi:10.1007/s00267-015-0568-z DOI: https://doi.org/10.1007/s00267-015-0568-z

Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J., Barrón, C., & Apostolaki, E. T. (2010). Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles, 24, 1-8. doi:10.1029/2010GB003793 DOI: https://doi.org/10.1029/2010GB003793

Elizabeth Mcleod, Gail L Chmura, Steven Bouillon, Rodney Salm, Mats Björk, Carlos M Duarte,

Elizabeth Mcleod, Gail L Chmura, Steven Bouillon, Rodney Salm, Mats Björk, Carlos M Duarte,

Enriquez, C., Mariño-Tapia, I., & Herrera-Silveira, J. A. (2010). Dispersion in the Yucatan coastal zone: Implications for red tide events. Continental Shelf Research, 30(2), 127-137. 10.1016/j.csr.2009.10.005 DOI: https://doi.org/10.1016/j.csr.2009.10.005

Flores-Verdugo, F., Moreno-Casasola, P., Agraz-Hernández, C. M., López-Rosas, H., Benítez-Pardo, D., & Travieso-Bello, A. C. (2007). La topografía y el hidroperíodo: dos factores que condicionan la restauración de los humedales costeros. Boletín de la Sociedad Botánica de México, 80, 33-47. DOI: https://doi.org/10.17129/botsci.1755

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., & Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5, 505-509. doi:10.1038/ngeo1477 DOI: https://doi.org/10.1038/ngeo1477

Fourqurean, J., Johnson, B., Kauffman, J. B., Kennedy, H., Emmer, I., Howard, J., Pidgeon, E., & Serrano, O. (2014). Conceptualizing the Project and Developing a Field Measurement Plan. In J. Howard, S. Hoyt, K. Isensee, & M. Telszewski (Eds.), Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows (pp. 25-38). Arlington, Virginia, USA: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.

Gibbs, J. P. (2000). Wetland loss and biodiversity conservation. Conservation Biology 14(1), 314-317. doi:10.1046/ j.1523-1739.2000.98608 DOI: https://doi.org/10.1046/j.1523-1739.2000.98608.x

Graniel, E. C. (2010). Hidrología. Biodiversidad & Desarrollo Humano en Yucatán. En R., Durán., & M. Méndez. (Eds.) Biodiversidad y desarrollo humano en Yucatán (pp. 12-13). Mérida, Yucatán: CICY, PPD-FMAM, CONABIO & SEDUMA.

Grimsditch, G., Alder, J., Nakamura, T., Kenchington, R., & Tamelander, J. (2013). The blue carbon special edition - Introduction and overview. Ocean and Coastal Management, 83, 1-4. doi:10.1016/j.ocecoaman.2012.04.020 DOI: https://doi.org/10.1016/j.ocecoaman.2012.04.020

Gullström, M., Lyimo, L., Dahl, M., Samuelsson, G., Eggertsen, M., Anderberg, E., Rasmusson, L., Linderholm, H., Knudby, A., Bandeira, S., Nordlund, L., & Björk, M. (2017). Blue Carbon Storage in Tropical Seagrass Meadows Relates to Carbonate Stock Dynamics, Plant–Sediment Processes, and Landscape Context: Insights from the Western Indian Ocean. Ecosystems, 21(3), 551-566. doi:10.1007/s10021-017-0170-8 DOI: https://doi.org/10.1007/s10021-017-0170-8

Hernández-Arana, H. A., Vega-Zepeda, A., Ruíz-Zárate, M. A., Falcón-Álvarez, L. I., López-Adame, H., Herrera-Silveira, J., & Kaster, J. (2015). Transverse Coastal Corridor: From Freshwater Lakes to Coral Reefs Ecosystems. En G. Islebe, S. Calmé, J. León-Cortés & B. Schmook (Eds.), Biodiversity and Conservation of the Yucatan Peninsula (pp. 355-376). Suiza: Springer, Cham. doi.org/10.1007/978-3-319-06529-8 DOI: https://doi.org/10.1007/978-3-319-06529-8_14

Herrera-Silveira, J. A., & Comín, F. A. (2000). An Introductory account of the types of aquatic ecosystems of Yucatan Peninsula (SE Mexico). In M. Munawar, S. G. Lawrence, I. F. Munawar, & D. F. Malley (Eds.), Ecovision World Monographs Series. Aquatic Ecosystems of Mexico: Status & Scope (pp 213-227). Leiden, Netherlands: Backhuys Pub.

Herrera-Silveira, J. A., & Morales-Ojeda, S. M. (2009). Evaluation of the health status of a coastal ecosystem in southeast Mexico: Assessment of water quality, phytoplankton and submerged aquatic vegetation. Marine Pollution Bulletin, 59(1–3), 72-86. doi:10.1016/j.marpolbul.2008.11.017 DOI: https://doi.org/10.1016/j.marpolbul.2008.11.017

Herrera-Silveira, J. A., Camacho-Rico, A., Pech, E., Pech, M., Ramírez Ramírez, J., & Teutli-Hernández, C. (2016). Carbon Dynamics (Stocks and Fluxes) in Mangroves of Mexico. Terra Latinoamericana, 34, 61–72.

Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (Eds.), 2014. Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Arlington, Virginia, USA: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.

Huxham, M., Whitlock, D., Githaiga, M., & Dencer-Brown, A. (2018). Carbon in the Coastal Seascape: How Interactions Between Mangrove Forests, Seagrass Meadows and Tidal Marshes Influence Carbon Storage. Current Forestry Reports, 4(2), 101–110. doi:10.1007/s40725-018-0077-4 DOI: https://doi.org/10.1007/s40725-018-0077-4

Intergovernmental Panel on Climate Change [IPCC]. (2011). IPCC Expert Meeting on HWP, Wetlands and Soil N2O, Geneva, Switzerland, 19-21 October, 2010. H. S. Eggleston, N. Srivastava, K. Tanabe, J. Baasansuren, & M. Fukuda (Eds.). Japan: IGES.

Krauss, K. W., Noe, G. B., Duberstein, J. A., Conner, W. H., Stagg, C. L., Cormier, N., Jones, M. C., Bernhardt, C. E., Lockaby, B. G., From, A. S., Doyle, T. W., Day, R. H., Scott, H. E., Pierfelice, K. N., Hupp, C. R., Chow, A. T., & Whitbeck, J. L. (2018). The Role of the Upper Tidal Estuary in Wetland Blue Carbon Storage and Flux. Global Biogeochemical Cycles, 32(5), 817-839. doi:10.1029/2018GB005897. DOI: https://doi.org/10.1029/2018GB005897

Langenheder, S., & Ragnarsson, H. (2007). The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology, 88(9), 2154-2161. doi: 10.1890/06-2098.1 DOI: https://doi.org/10.1890/06-2098.1

Lavery, P. S., Mateo, M. Á., Serrano, O., & Rozaimi, M. (2013). Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service. PLoS ONE, 8(9), 1-12. doi:10.1371/journal.pone.0073748 DOI: https://doi.org/10.1371/journal.pone.0073748

Macreadie, P. I., Ollivier, Q. R., Kelleway, J. J., Serrano, O., Carnell, P. E., Ewers Lewis, C. J., Atwood, T. B., Sanderman, J., Baldock, J., Connolly, R. M., Duarte, C. M., Lavery, P. S., Steven, A., & Lovelock, C. E. (2017). Carbon sequestration by Australian tidal marshes. Scientific Reports, 7, 1-10. doi:10.1038/srep44071 DOI: https://doi.org/10.1038/srep44071

Marín, L. E., Perry, E. C., Essaid, H. I., & Steinich, B. (2001). Hydrogeological investigations and numerical simulation of groundwater flow in the karstic aquifer of northwestern Yucatan, Mexico. Recuperado de http://www.olemiss.edu/sciencenet/saltnet/swica1/Marin-Perry-Essaid-paper.pdf

Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552-560. doi:10.1890/110004 DOI: https://doi.org/10.1890/110004

Milner, C., & Hughes, R. E. (1968). Methods for the measurement of primary production of grassland. IBP Handbook No.6. Oxford, England: Blackwell Scientific Publications.

Mitsch, W., Bernal, B., Nahlik, A., Mander, Ü., Zhang, L., Anderson, C., Jørgensen, S. E. & Brix, H. (2012). Wetlands, carbon, and climate change. Landscape Ecology, 28(4), 583-597. doi:10.1007/s10980-012-9758-8 DOI: https://doi.org/10.1007/s10980-012-9758-8

Nellemann, C., Corcoran, E., Duarte, C. M., Valdrés, L., De Young, C. D., Fonseca, L, & Grimsditch, G. (Eds.). (2009). Blue Carbon: The Role of Healthy Oceans in Binding Carbon. Arendal, Noruega: United Nations Environment Programme, GRID-Arendal.

Neubauer, S. C., Franklin, R. B., & Berrier, D. J. (2013). Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences, 10(12), 8171–8183. doi:10.5194/bg-10-8171-2013. DOI: https://doi.org/10.5194/bg-10-8171-2013

Neue, H. U., Wassmann R., Kludze H. K, Wang, B., & Lantin, R. S. (1997). Factors and processes controlling methane emissions from rice fields. Nutrient Cycling in Agroecosystems. 49, 111-117. DOI: https://doi.org/10.1023/A:1009714526204

Odum, W. E., Smith III, T. J., Hoover, J. K., & McIvor, C. C. (1984). The ecology of tidal freshwater marshes of the U.S. east coast: a community profile. FWS/OBS 83/17. Charlottesville, VA: U.S. Fish and Wildlife Service.

Ouyang, X., & Lee, S. Y. (2014). Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences, 11, 5057-5071. doi.org/10.5194/bg-11-5057-2014 DOI: https://doi.org/10.5194/bg-11-5057-2014

Palafox-Juárez, B. E., & Liceaga-Correa, M. de los A. (2017). Spatial diversity of a coastal seascape: Characterization, analysis and application for conservation. Ocean and Coastal Management, 136, 185-195. doi:10.1016/j.ocecoaman.2016.12.002 DOI: https://doi.org/10.1016/j.ocecoaman.2016.12.002

Pendleton, L., Donato, D.C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., & Baldera, A. (2012). Estimating global “Blue Carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9), 1-7. doi.org/10.1371/journal.pone.0043542 DOI: https://doi.org/10.1371/journal.pone.0043542

Pennings, S. C., & Silliman, B. R. (2005). Linking biogeography and community ecology: latitudinal variation in plant–herbivore interaction strength. Ecology, 86(9), 2310-2319. DOI: https://doi.org/10.1890/04-1022

Perry, E., Velazquez-Oliman, G., & Socki, R. A. (2003). Chapter 7. Hydrogeology of the Yucatán Peninsula. En A. Gómez-Pompa, M. Allen, S. Scott Fedick, & J. J. Jiménez-Osornio (Eds.), The Lowland Maya Area: Three Millennia at the Human-Wildland Interface (pp. 115–138). New York: Food Products Press.

Programa de Ordenamiento Ecológico del Territorio Costero del Estado de Yucatán. [POETCY]. (2007). Informe técnico final. Yucatán: Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida/Centro de Investigación Científica de Yucatán/Instituto Tecnológico de Conkal/Instituto Tecnológico de Mérida/ Universidad Autónoma de Yucatán. Recuperado de http://www.bitacoraordenamiento.yucatan.gob.mx.

Reef, R., Feller, I. C., & Lovelock, C. E. (2010). Nutrition of mangroves. Tree Physiology, 30, 1148–1160. doi:10.1093/treephys/tpq048 DOI: https://doi.org/10.1093/treephys/tpq048

Rejmankova, E., Pope, K. O., Post, R., & Maltby, E. (1996). Herbaceous Wetlands of the Yucatan Peninsula: Communities at Extreme Ends of Environmental Gradients. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 81(2), 223-252. doi:10.1002/iroh.19960810208 DOI: https://doi.org/10.1002/iroh.19960810208

Roache, M. C., Bailey, P. C., & Boon, P. I. (2006). Effects of salinity on the decay of the freshwater macrophyte, Triglochin procerum. Aquatic Botany, 84(1), 45-52. doi.org/10.1016/j.aquabot.2005.07.014 DOI: https://doi.org/10.1016/j.aquabot.2005.07.014

Rocha, H., Cardona, A., Graniel, E., Alfaro, C., Castro, J., Rüde, T., Herrera, E., & Heise, L. (2015). Interfases de agua dulce y agua salobre en la región Mérida-Progreso, Yucatán. Tecnología y Ciencias del Agua, 6(6), 89–112.

Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L., & Pagliosa, P. R. (2018). Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6), 534-538. doi:10.1038/s41558-018-0162-5 DOI: https://doi.org/10.1038/s41558-018-0162-5

Sanders, C. J., Smoak, J. M., Waters, M. N., Sanders, L. M., Brandini, N., & Patchineelam, S. R. (2012). Organic matter content and particle size modifications in mangrove sediments as responses to sea level rise. Marine Environmental Research. 77, 150–155. doi:10.1016/j.marenvres.2012.02.004 DOI: https://doi.org/10.1016/j.marenvres.2012.02.004

Schumaher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments. Las Vegas, NV: Ecological Risk Assesment Support Center, United States Environmental Protection Agency.

Sousa, A. I., Santos, D. B., Ferreira da Silva, E., Sousa, L. P., Cleary, D. F. R., Soares, A. M. V. M., & Lillebø, A. I. (2017). “Blue Carbon” and Nutrient Stocks of Salt Marshes at a Temperate Coastal Lagoon (Ria de Aveiro, Portugal). Scientific Reports, 7(1), 1–11. doi:10.1038/srep41225 DOI: https://doi.org/10.1038/srep41225

Starr, G., Jarnigan, J. R., Staudhammer, C. L., & Cherry, J. A. (2018). Variation in ecosystem carbon dynamics of saltwater marshes in the northern Gulf of Mexico. Wetlands Ecology and Management, 26(4), 1-16. doi:10.1007/s11273-018-9593-z DOI: https://doi.org/10.1007/s11273-018-9593-z

Teutli-Hernández, C., & Herrera-Silveira, J. A. 2018. The Success of hydrological rehabilitation in Mangrove wetlands using box culverts across coastal roads in Northern Yucatán. In C. Makowski, & C. W. Finkl (Eds.), Threats to Mangrove Forests: Hazards, Vulnerability and Management (pp 607-620). Switzerland: Springer. DOI: https://doi.org/10.1007/978-3-319-73016-5_28

Thorslund, J., Jarsjö, J., Jaramillo, F., Jawitz, J., Manzoni, S., Basu, N., Chalov, S., Cohen, M., Creed, I., Goldenberg, R., Hylin, A., Kalantari, Z., Koussis, A., Lyon, S., Mazi, K., Mård, J., Klas, P., Pietroń, J., Prieto, C., & Destouni, G. (2017). Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 108(B), 489-497. doi:10.1016/j.ecoleng.2017.07.012 DOI: https://doi.org/10.1016/j.ecoleng.2017.07.012

Turner, R. K., Brouwer, R., & Georgiou, S. (2009). Chapter 26. Methodologies for Economic Evaluation of Wetlands and Wetland Functioning. In E. Maltby, & T. Barker (Eds.), The Wetlands Handbook (pp. 601-625). US: Blackwell Publishing Ltd. doi:10.1002/9781444315813.ch26 DOI: https://doi.org/10.1002/9781444315813.ch26

Twilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon sinks in mangrove forests and their implications to the carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution, 64(1), 265-288. 10.1007/BF00477106 DOI: https://doi.org/10.1007/BF00477106

Valiela, I., Teal, J. M., & Persson, N. Y. (1976) Production and dynamics of experimentally enriched salt marsh vegetation: belowground biomass. Limnology and Oceanography, 21(2), 245-252. DOI: https://doi.org/10.4319/lo.1976.21.2.0245

Vega-López, E. (2008). Valor económico potencial de las Áreas Naturales Protegidas federales de México como sumideros de carbono. Facultad de Economía, Universidad Nacional Autónoma de México (UNAM). Reporte de consultoría, The Nature Conservancy-Programa México. Recuperado de: https://docplayer.es/67251566-Valor-economico-potencial-de-las-areas-naturales-protegidas-federales-de-mexico-como-sumideros-de-carbono.html.

Walcker, R., Gandois, L., Proisy, C., Corenblit, D., Mougin, É., Laplanche, C., Ray, R., & Fromard, F. (2018). Control of "blue carbon" storage by mangrove ageing: Evidence from a 66-year chronosequence in French Guiana. Global Change Biology, 24(6), 2325-2338. 10.1111/gcb.14100. DOI: https://doi.org/10.1111/gcb.14100

Weston, N. B., Dixon, R. E., & Joye, S. B. (2006). Ramifications of in- creased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization, Journal of Geophysical. Research, 111(G01009), 1-14. doi:10.1029/2005JG000071. DOI: https://doi.org/10.1029/2005JG000071

Yao, J., Sánchez-Pérez, J., Sauvage, S., Teissier, S., Attard, E., Lauga, B., Duran, R., Julien, F., Bernard-Jannin, L., Ramburn, H., & Gerino, M. (2017). Biodiversity and ecosystem purification service in an alluvial wetland. Ecological Engineering, 103(B), 359-371. doi:10.1016/j.ecoleng.2016.02.019 DOI: https://doi.org/10.1016/j.ecoleng.2016.02.019

Descargas

Publicado

2021-10-29

Cómo citar

Morales-Ojeda, S. M., Herrera-Silveira, J. A., & Orellana, R. (2021). Almacenes de carbono en un paisaje de humedal cárstico a lo largo de un corredor transversal costero de la Península de Yucatán. Madera Y Bosques, 27(4). https://doi.org/10.21829/myb.2021.2742425
Metrics
Vistas/Descargas
  • Resumen
    968
  • PDF
    495
  • LENS
    103

Número

Sección

Artículos Científicos

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.