Alometría generalizada para la estimación de la biomasa aérea total de plantas leñosas: marco teórico general y aplicaciones
DOI:
https://doi.org/10.21829/myb.2021.2742442Palabras clave:
carbono, estimaciones locales y generalizadas, relación entre constantes y exponentes, unidades de medidaResumen
La cuantificación de la biomasa aérea y carbono total es importante en el contexto de los mercados del carbono y la productividad forestal, por lo que es necesario el desarrollo de métodos cuantitativos costo-efectivos que reduzcan la incertidumbre en sus estimaciones. El uso de ecuaciones alométricas entre la biomasa aérea total y volumen del fuste o total y entre el diámetro normal y la altura total es práctica común en la evaluación de recursos forestales, donde se usan modelos específicos y generalizados, con diferentes niveles de incertidumbre. En la literatura se han propuesto diversas metodologías para simplificar el uso de tales relaciones alométricas, sugiriendo algunas con bases correctas, pero sin explorar sus implicaciones y matemáticas asociadas. En este trabajo se presenta un marco teórico general de las relaciones entre constantes y exponentes, así como entre exponentes, de ciertas ecuaciones alométricas, usando bases matemáticas relativamente simples. Seguido del desarrollo del marco teórico, se usa una base de parámetros de relaciones alométricas y un conjunto de bases de datos de mediciones de campo. Con lo anterior se obtiene, como resultado las estimaciones que son comparables a las ecuaciones alométricas clásicas, pero con el uso de solo la relación altura total-diámetro normal. Se exploran las consecuencias de la propuesta teórica y se generan recomendaciones para cambiar el paradigma en los desarrollos alométricos tradicionales para plantas leñosas.
Descargas
Citas
Acosta-Mireles, M., Vargas-Hernández, J., Velázquez-Martínez, A., & Etchevers-Barra, J. D. (2002). Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia, 36(6), 725-736.
Acosta-Mireles, M. (2003). Diseño y aplicación de un método para medir los almacenes de carbono en sistemas con vegetación forestal y agrícolas de ladera en México. Tesis de Doctorado en Ciencias, Colegio de Posgraduados, Montecillos, México. 135 p.
Augusto, L., Ranger, J., Ponette, Q., & Rapp, M. (2000). Relationship between forest tree species stand production and stand nutrient amount. Annals of Forest Science, 57(4), 313-324. doi: 10.1051/forest:2000122 DOI: https://doi.org/10.1051/forest:2000122
Avendaño, D. M., Acosta, M., Carrillo, F., & Etchevers, J. D. (2009). Estimación de biomasa y carbono en un bosque de Abies religiosa. Revista Fitotecnia Mexicana, 32(3), 233-238. doi: 10.35196/rfm.2009.3.233-238 DOI: https://doi.org/10.35196/rfm.2009.3.233-238
Baskerville, G. L. (1972). Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forestry, 2(1), 49-53. doi:10.1139/x72-009 DOI: https://doi.org/10.1139/x72-009
Beauchamp, J., & Olson, J. (1973). Corrections for bias in regression estimates after logarithmic transformation. Ecology, 54(6), 1403-1407. doi:10.2307/1934208 DOI: https://doi.org/10.2307/1934208
Bradu, D., & Mundlak, Y. (1970). Estimation in lognormal linear models. Journal of the American Statistical Association, 65(329), 198-211. doi:10.2307/2283587 DOI: https://doi.org/10.1080/01621459.1970.10481074
Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation for tropical forests with applications to forest inventory data. Forest Science, 35(4), 881-902. doi: 10.1093/forestscience/35.4.881
Brown, S. (1997). Estimating biomass change of tropical forests, a primer. Forest Resources Assessment Publication. Forestry Papers 134, FAO, Rome.
Cannell, M. G. R. (1984). Woody biomass of forest stands. Forest Ecology and Management, 8, 299-312. doi: 10.1016/0378-1127(84)90062-8 DOI: https://doi.org/10.1016/0378-1127(84)90062-8
Case, B. S., & Hall, R. J. (2008). Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest of west-central Canada. Canadian Journal of Forest Research 38(4), 878-889. doi: 10.1139/x07-212 DOI: https://doi.org/10.1139/x07-212
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. doi: 10.1007/s00442-005-0100-x DOI: https://doi.org/10.1007/s00442-005-0100-x
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosofical Transactions of the Royal Society B: Biological Sciences, 359(1443), 409-420. doi: 10.1098/rstb.2003.1425 DOI: https://doi.org/10.1098/rstb.2003.1425
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C, Duque, A., Eid, T., Fearnside, P. M., Goodman, R. S., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Maavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190. doi: 10.1111/gcb.12629 DOI: https://doi.org/10.1111/gcb.12629
Chave, J., Riéra, B., & Dubois M. A. (2001). Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology, 17(1), 79-96. doi 10.1017/S0266467401001055 DOI: https://doi.org/10.1017/S0266467401001055
Chuyong, G. D., Droissart, V., Fayolle, A., Calisto, G. R., Henry, M., Guy Kamdem, N., Katembo, M. J., Kenfack, D., Libalah, M., Ngomanda, A., Rossi, V., Sonké, B., Texier, N., Thomas, D., Zebaze, D., Couteron, P., Berger, U., & Pélissier, R. (2016). Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences, 13(5), 1571-1585. doi:10.5194/bg-13-1571-2016
Cifuentes, J. M., Henry, M., Réjou, M., Wayson, C., Zapata, M., Piotto, D., Alice, F., Castañeda, L. H., Castellanos, L. E., Cuenca, L. R., Cueva, R. K., del Águila, P. J., Duque, M. A., Fernández, V. J., Jiménez, G. A., López, O., Marklund, L., Michel, F. J., Milla, F., Návar Ch., J., Ortiz, M. E., Pérez, J., Ramírez, Z. C., Rangel, G. C., Rubilar, P. C., Saint-André, L., Sanquetta, C., Scott, C., & Westfall, J. (2014). Guidelines for documenting and reporting tree allometric equations. Annals of Forest Science, 72(6), 1-6. doi: 10.1007/s13595-014-0415-z DOI: https://doi.org/10.1007/s13595-014-0415-z
Cifuentes, Jara, M., Henry, M., Réjou, M., Lopez, O. R., Wayson, C., Michel, F., Castellanos, E., Zapata, C., Piotto, D., Alice, G., Castañeda, L., Cuenca, L., Cueva, R., del Águila, P., Duque, Á. M., Fernández, J. V., Jiménez, A. G., Marklund, L. G., Milla, F., Návar, J. J., Ortiz, E. M., Pérez, J., Ramírez, C. Z., Rangel, L. G., Rubilar, R. P., Saint-André, L., Sanquetta, C., Scott, C., & Westfall, J. (2015). Overcoming obstacles to sharing data on tree allometric equations. Annals of Forest Science, 72, 789-794. doi: 10.1007/s13595-015-0467-8 DOI: https://doi.org/10.1007/s13595-015-0467-8
Clifford, D., Cressie, N., England, J. R., Roxburgh, S. H., & Paul, K. I. (2013). Correction factors for unbiased, efficient estimation and prediction of biomass from log-log allometric models. Forest Ecology and Management, 310, 375-381. doi: 10.1016/j.foreco.2013.08.041 DOI: https://doi.org/10.1016/j.foreco.2013.08.041
Crow, E. L., & Shimizu, K. (1988). Lognormal distributions. Theory and applications. Dekker. New York.
Cunia, T. (1987). Construction of tree biomass tables by linear regression techniques. En: E. H. Wharton & T. Cunia. (Eds.). Estimating tree biomass regressions and their error (pp. 27-36). USDA Forest Service. General Technical Report NE-GTR-117.
Dawkins, H. C. (1963). Estimating total volumen of some Caribbean trees. Caribbean Forester, 22(1), 62-63.
Djomo, A. N., Ibrahima, A., Saborowski, J., & Gravenhorst, G. (2010). Allometric equations for biomass estimation in Cameroon and pan moist tropical equation including biomass data from Africa. Forrest Ecology and Management, 260(10), 1873-1885. doi: 10.1016/j.foreco.2010.08.034 DOI: https://doi.org/10.1016/j.foreco.2010.08.034
Dralle, D., Karst, N., & Thompson, S. E. (2015). a, b careful: The challenge of scale invariance for comparative analyses in power law models of the streamflow recession. Geophysical Research Letters, 42(21), 9285-9293. doi: 10.1002/2015GL066007. DOI: https://doi.org/10.1002/2015GL066007
Duan, N. (1983). Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association, 78(383), 605-610. doi:10.1080/01621459.1983.10478017 DOI: https://doi.org/10.1080/01621459.1983.10478017
El-Shaarawi, A. H., & Viveros, R. (1997). Inference about the mean in log-regression with environmental applications. Environmetrics, 8(5), 569-582. DOI: https://doi.org/10.1002/(SICI)1099-095X(199709/10)8:5<569::AID-ENV274>3.0.CO;2-I
Falster, D., Duursma, R. A., Ishihara, M. I., Barneche, D. R., FitzJohn, R. G., Varhammar, A., Aiba, M., Ando, M., Anten, N., Aspinwall, M. J., Baltzer, J. L., Baraloto, C., Battaglia, M., Battles, J. J., Bond, B. L., van Breugel, M., Camac, J., Claveau, Y., Coll, L., Dannoura, M., Delagrange, S., Domec, J. C., Fatemi, F., Feng, W., Gargaglione, V., Goto, Y., Hagihara, A., Hall, J. S., Hamilton, S., Harja, D., Hiura, T., Holdaway, R., Hutley, L. S., Ichie, T., Jokela, E. J., Kantola, A., Kelly, J. W. G., Kenzo, T., King, D., Kloeppel, B. D., Kohyama, T., Komiyama, A., Laclau, J. P., Lusk, C. H., Maguire, D. A., le Maire, G., Mäkelä, A., Markesteijn, L., Marshall, J., McCulloh, K., Miyata, I., Mokany, K., Mori, S., Myster, R. W., Nagano, M., Naidu, S. L., Nouvellon, Y., O'Grady, A. P., O'Hara, K., Ohtsuka, T., Osada, N., Osunkoya, O. O., Peri, P. L., Petritan, A. M., Poorter, L., Porthsmuth, A., Potvin, C., Ransijn, J., Reid, D., Ribeiro, S. C., Roberts, S. D., Rodriguez, R., Saldana, A., Santa-Regina, I., Sasa, K., Selaya, N. G., Sillett, S. C., Sterck, F., Takagi, K., Tange, T., Tanouchi, H., Tissue, D., Umehara, T., Utsugi, H., Vadeboncoeur, M. A., Valladares, F., Vanninen, P., Wang, J. R., Wenk, E., Williams, R., de Aquino Ximenes, F., Yamaba, A., Yamada, T., Yamakura, T., Yanai, R. D., & York, R. A. (2015). BAAD: A Biomass And Allometry Database for woody plants. Ecology 96(5), 1445. doi: 10.1890/14-1889.1 DOI: https://doi.org/10.1890/14-1889.1
Fayolle, A., Loubota Panzou, G. J., Drpuet, T., Swaine, M. D., Bauwens, S., Vlrminckx, J., Biwole, A., Lejeune, P., & Doucet, J. L. (2016). Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. Forest Ecology and Management, 374, 42-50. doi: 10.1016/j.foreco.2016.04.033 DOI: https://doi.org/10.1016/j.foreco.2016.04.033
Fehrmann, L., & Kleinn, C. (2006). General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in Central Europe. Forest Ecology and Management, 236, 4112-421. doi: 10.1016/j.foreco.2006.09.026 DOI: https://doi.org/10.1016/j.foreco.2006.09.026
Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S., Quesada, C. A., Affum-Baffoe, K., Arets, E. J., Berry, N. J., Bird, M., Brondizio, E. S., de Camargo, P., Chave, J., Djagbletey, G., Dominguez, T. F., Drescher, M., Fernside, P. M., Franca, M. B., Fyllas, N. M., Lopez, G., Hladik, A., Higuchi, N., Hunter, M. O., Lida, Y., Salim, K. A., Kassim, A. R., Keller, M., Kemp, J., King, D. A., Lovett, J. C., Marimom, B. S., Marimon, B. H., Lenza, E., Marshall, A. R., Metcalfe, D. J., Mictchard, E.T. A., Moran, E. F., Nelson, W. B., Nilus, R., Nogueira, E. M., Palace, M., Patiño, S., Peh, K. S. H., Raventos, T, Reitsma, J. M., Saiz, Schrodt, F., Sonké, B., Taedoumg, H. E., Tan, S., White, L., Wöll, H., & Lloyd, J. (2011). Height-diameter allometry of tropical forest trees. Biogeosciences, 8(5), 1081-1106. doi:10.5194/bg-8-1081-2011 DOI: https://doi.org/10.5194/bg-8-1081-2011
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo, M., Lopez, G., Banin, L., Abu, K. S., Affum, K. B., Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragao, L., Araujo, A., Arets, E. J. M. M., Arroyo, L., Aymard, G. A., Baker, T. R., Bánki, O. S., Berry, N. J., Cardozo, N., Chave, J., Comiskey, J. A., Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Dominguez, T. E., Erwin, T. L., Fearnside, P . M., Franca, M. B., Freitas, M. A., Higuchi, N., Honorio, E., Lida, Y., Jiménez, E., Kassim, A. R., Killeen, T. J., Laurance, W. F., Lovett, J. C., Metcalfe, D. J., Mitchard, E. T. A, Neill, D. A., Nelson, B. W., Nilus, R., Nogueira, E. M., Parada, A., Peh, K. S. H., Pena, A. C., Peñuela, M. C., Pitman, N. C. A., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez, H. A., Reitsma, J. M., Rudas, A., Saiz, G., Salomao, R. P., Scwarz, M., Silva, N., Silva, J. E., Silveira, M., Sonké, B., Stropp, J., Taedoumg, H. E., Tan, S., Teer, H. S., Terborgh, J., Torello, M. R., van der Heijden, G. M. F., Vásquez, R., Vilanova, E., Vos, V. A., White, L., Wilcock, S., Woell, H., & Phillips, O. L. (2012). Tree height integrated int pantropical forest biomass estimates. Biogeosciences, 9(8), 3381-3403. doi: 10.5194/bg-9-3381-2012 DOI: https://doi.org/10.5194/bg-9-3381-2012
Finney, D. J. (1941). On the distribution of a variable whose logarithm is normally distributed. J. Royal Stat. Sci. Series B, 7(2), 155-161. doi: 10.2307/2983663 DOI: https://doi.org/10.2307/2983663
Forrester, D. I., Tachauer, I. H. H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz, R. P., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty, T., Saha, S., & Sileshi, G. W. (2017). Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 396, 160-175. doi: 10.1016/j.foreco.2017.04.011 DOI: https://doi.org/10.1016/j.foreco.2017.04.011
Gavrikov, V. L. (2017). Relationships between relationships in forest stands: intercepts and exponents analyses. J. For. Res, 29(3), 575-582. doi: 10.1007/s11676-017-0475-7. DOI: https://doi.org/10.1007/s11676-017-0475-7
Gayon, J. (2000). History of the concept of allometry. American Zoologist, 40(5), 748-758. doi: 10.1093/icb/40.5.748 DOI: https://doi.org/10.1093/icb/40.5.748
Genet, A., Wernsdörfer, H., Jonard, M., Pretzch, H., Rauch, M., Ponette, Q., Nys, C., Legout, A., Ranger, J., Vallet, P., & Saint-André, L. (2011). Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. Forest Ecology and Management, 261(7), 1188-1202. doi: 10.1016/j.foreco.2010.12.034 DOI: https://doi.org/10.1016/j.foreco.2010.12.034
Goodman, R. C., Phillips, O. L., & Baker, T. R. (2014). The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 24(4), 680-698. doi: 10.1890/13-0070.1 DOI: https://doi.org/10.1890/13-0070.1
Goussanou, C. A., Guendehou, S., Assogbadjo, A. E., Kaire, M., Sinsin, B., & Cuni, A. S. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica, 50(2). doi: 10.14214/sf.1474 DOI: https://doi.org/10.14214/sf.1474
Henry, M., Bombelli, A., Trotta, C., Alessandrini, A., Birigazzi, L., Sola, G., Vieilledent, G., Santenoise, P., Longuetaud, F., Valentini, R., Picard, N., & Saint-André, L. (2013). GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. iForest – Biogeosciences and Forestry, 0, 326-330. doi: 10.3832ifor0901-006 DOI: https://doi.org/10.3832/ifor0901-006
Henry, M., Cifuentes, M. J., Réjou, M., Piotto, D., Fuentes, J. M., Wayson, C., Guier, F. A., Castañeda, H. L., Castellanos, E. L., Cuenca, R. L., Cueva, K. R., del Águila, J. P., Duque, Á. M., Fernández, J. V., Jiménez, A. G., López, O. R., Marklund, L. G., Milla, F., Návar Ch., J. J., Ortiz, E. M., Pérez, J., Ramírez, C. Z., Rangel, L. G., Rubilar, R., Sanquetta, P. C., Scott, C., Westfall, J., Zapata, M. C., & Saint-André, L. (2015). Recommendations for the use of tree models to estimate national forest biomass and assess their uncertainty. Annals of Forest Science, 72, 769-777. doi: 10.1007/s13595-015-0465-x DOI: https://doi.org/10.1007/s13595-015-0465-x
Henry, M., Picard, N., Trotta, C., Manlay, R. J., Valentini, R., Bernoux, M., & Saint-André, L. (2011). Estimating tree biomass of Sub-Saharan African forests: a review of available allometric equations. Silva Fennica, 45(3B), 477-569. doi: 10.14214/sf.38 DOI: https://doi.org/10.14214/sf.38
Hersh, A. H. (1931). Facet number and genetic growth constants in bar-eyed stocks of Drosophila. The Journal of Experimental Zoology, 60(2), 213-248. doi: 10.1002/jez.1400600204 DOI: https://doi.org/10.1002/jez.1400600204
Hughes, R. F., Kauffman, J. B & Jaramillo, V. (1999). Biomass, carbon, and nutrient dynamic of secondary forests in humid tropical region of México. Ecology, 80(6),1892-1907. doi: 10.1890/0012-9658(1999)080[1892:BCANDO]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(1999)080[1892:BCANDO]2.0.CO;2
Hughes, H. G., Varner, L. W., & Blankenship, L. H. (1987). Estimating shrub production from plant dimensions. Journal of Range Management, 40(4), 367-369. doi: 10.2307/3898739 DOI: https://doi.org/10.2307/3898739
Hui, C., Terblanche, J. S., Chown, S. L., & McGeoch, M. A. (2010). Parameter landscapes unveil the bias in allometric prediction. Methods in Ecology and Evolution, 1(1), 69-74. doi: 10.1111/j.2041-210X.2009.00005.x DOI: https://doi.org/10.1111/j.2041-210X.2009.00005.x
Hulshof, C. M., Swenson, N. G., & Weiser, M. D. (2015). Tree height-diameter allometry across United States. Ecology and Evolution, 5(6), 1193-1204. doi: 10.1002/ece3.1328 DOI: https://doi.org/10.1002/ece3.1328
Huxley, J. S. (1924). Constant differential growth ratios and their significances. Nature, 114(), 895-896. doi: 10.1038/114895a0 DOI: https://doi.org/10.1038/114895a0
Huxley, J. S. (1932). Problems of relative growth. New York: The Dial Press.
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species. Forest Science, 49(1), 12-35. doi: 10.1093/forestscience/49.1.12
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2004). Comprehensive database of diameter-based biomass regressions for North American tree species. General Technical Report NE-319. Northeastern Research Station. USDA Forest Service, Newton Square, PA. 47 p. DOI: https://doi.org/10.2737/NE-GTR-319
Jokela, E. J., Shannon, C. A., & White, E. H. (1981). Biomass and nutrient equations for mature Betula papyrifera Marsh. Canadian Journal of Forest Research, 11(2), 298-304. doi: 10.1139/x81-040 DOI: https://doi.org/10.1139/x81-040
Kaitaniemi, P. (2008). How to derive biological information from the value of the normalization constant in allometric equations. PLoS ONE, 3, e1932. doi: 10.1371/journal.pone.0001932 DOI: https://doi.org/10.1371/journal.pone.0001932
Ketterings, Q. M., Coe, R., van Noordwijk, M., Ambagau, Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1-3), 199-209. doi: 10.1016/S0378-1127(00)00460-6 DOI: https://doi.org/10.1016/S0378-1127(00)00460-6
Lambert, M. C., Ung, C. H., & Raulier, F. (2005). Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research, 35(8), 1996-2018. doi: 10.1139/x05-112 DOI: https://doi.org/10.1139/x05-112
Lee, C. Y. (1982). Comparison of two correction methods for the bias due to the logarithmic transformation in the estimation of biomass. Canadian Journal of Forest Research, 12(2), 326-331. doi: 10.1139/x82-047 DOI: https://doi.org/10.1139/x82-047
Lines, E.R., Zavala, M. A., Purves, D. W., & Coomes, D. A. (2012). Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography, 21(10), 1017-1028. doi: 10.1111/j.1466-8238.2011.00746.x DOI: https://doi.org/10.1111/j.1466-8238.2011.00746.x
Lumer, H. (1936). The relation between b and k in systems of relative growth functions of the form Y = bXk. The American Naturalist, 70, 188-191. DOI: https://doi.org/10.1086/280654
Lumer, H. (1939). The dimensions and interrelationship of the relative growth constants. American Naturalist, 73, 339-345. DOI: https://doi.org/10.1086/280844
Lumer, H., Anderson, B. G., & Hersh, A. H. (1942). On the significance of the constant b in the law of allometry Y=bXa. American Naturalist, 76, 364-375. DOI: https://doi.org/10.1086/281053
Mason, N. W. H., Beets, P.N., Payton, I., Burrows, L., Holdaway, R. J., & Carsweil, F. E. (2014). Individual-based allometric equations accurately measure carbon storage and sequestration in shrublands. Forests, 5(2), 309-324. doi: 10.3390/f5020309 DOI: https://doi.org/10.3390/f5020309
Méndez, G., J., Turlan, O. A, Ríos, J. C. S., & Nájera, J. A. L. (2012). Ecuaciones alométricas para estimar biomasa aérea de Prosopis laevigata (Humb. and Bonpl. Ex Willd.) M. C. Johnst. Revista Mexexicana de Ciencias Forestales, 3(13), 57-72. DOI: https://doi.org/10.29298/rmcf.v3i13.489
Miller, D. M. (1984). Reducing transformation bias in curve fitting. The American Statistician, 38(2), 124-126. doi: 10.1080/00031305.1984.10483180 DOI: https://doi.org/10.1080/00031305.1984.10483180
Molto, Q., Rossi, V., & Blanc, L. (2013). Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution, 4(2), 175-183. doi: 10.1111/j.2041-210x.2012.00266.x DOI: https://doi.org/10.1111/j.2041-210x.2012.00266.x
Motulsky, H. J., & Ransnas, L. A. (1987). Fitting curves to data using nonlinear regression: a practical and nonmathematical review. The FASEB Journal, 1(5), 365-374. doi: 10.1096/fasebj.1.5.3315805 DOI: https://doi.org/10.1096/fasebj.1.5.3315805
Muukkonen, P. (2007). Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126(2), 157-166. doi: 10.1007/s10342-007-0168-4 DOI: https://doi.org/10.1007/s10342-007-0168-4
Najera, J. A. (1999). Ecuaciones para estimar biomasa, volumen y crecimiento en biomasa y captura de carbono en diez especies típicas del matorral espinoso Tamaulipeco del nordeste de México. Tesis de Maestría, Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Linares, Nuevo León. 98 p.
Návar, J. J. (2009a). Allometric equations for tree species and carbon stocks for forests of Northwestern Mexico. Forest Ecology and Management, 257(2), 427-434. doi: 10.1016/j.foreco.2008.09.028 DOI: https://doi.org/10.1016/j.foreco.2008.09.028
Návar, J. J. (2009b). Biomass component equations for Latin American species and group of species. Annals of Forest Science, 66(2), 1-8. doi: 10.1051/forest/2009001 DOI: https://doi.org/10.1051/forest/2009001
Návar, J. J. (2010a). Biomass allometry for tree species of Northwestern Mexico. Tropical and Subtropical Agroecosystems, 12(3), 507-517.
Návar, J. J. (2010b). Measurement and assessment methods of forest aboveground biomass: a literature review and challenges ahead. En: M. Momba & F. Bux. Biomass. Intech. Sciyo, Croatia.
Návar, J., Nájera, J., & Jurado, E. (2001). Preliminary estimates of biomass growth in the Tamaulipan thornscrub in north-eastern Mexico. Journal of Arid Environments, 47(3), 281-290. doi: 10.1006/jare.2000.0708 DOI: https://doi.org/10.1006/jare.2000.0708
Návar, J., Nájera, J., & Jurado, E. (2002). Biomass estimation equations in the Tamaulipan thornscrub of north-eastern Mexico. Journal of Arid Environments, 52(2), 167-179. doi: 10.1006/jare.2001.0819 DOI: https://doi.org/10.1006/jare.2001.0819
Návar, J., Ríos, J. S., Pérez, G. V., de J. Rodríguez, F., & Domínguez, P. A. (2013). Regional aboveground biomass equations for North American arid and semi-arid forests. Journal of Arid Environments, 97, 127-135. doi: 10.1016/j.jaridenv.2013.05.016 DOI: https://doi.org/10.1016/j.jaridenv.2013.05.016
Ngomanda, A., Engone, N. L., Lebamba, J., Moundounga, Q., Gomat, H., Sidoine Mankou, G., Loumeto, J., Midoko, D., Koss, F., Zinga, R., Botsika, K. H., Mikala, C., Nyangadouma, R., Lépengué, N., Mbatchi, B., & Picard, N. (2013). Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest? Forest Ecology and Management, 312, 1-9. doi: 10.1016/j.foreco.2013.10.029 DOI: https://doi.org/10.1016/j.foreco.2013.10.029
Nickless, A., Scholes, R. J., & Archibald, S. (2011). A method for calculating the variance and confidence intervals for tree biomass estimates obtained from allometric equations. South African Journal of Science, 107(5-6), 86-95. doi: 10.4102/sajs.v107i5/6.356 DOI: https://doi.org/10.4102/sajs.v107i5/6.356
Niklas, K. J. (1994). Plant allometry, the scaling of form and process. Chicago: University of Chicago Press. 365 p.
Nuno, A., Tomé, M., Tomé, J., Soares, P., & Fontes, L. (2007). Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Canadian Journal of Forest Research, 37(5), 895-906. doi: 10.1139/X06-276 DOI: https://doi.org/10.1139/X06-276
O´Brien, S. T., Hubell, S. P., Spiro, P., Condit, R., & Foster, R. B. (1995). Diameter, height, crown, and age relationships in eight neotropical tree species. Ecology, 76(6), 1926-1939. doi: 10.2307/1940724 DOI: https://doi.org/10.2307/1940724
Packard, G. C. (2009). On the use of logarithmic transformation in allometric analyses. Journal of Theoretical Biology, 257(3), 515-518. doi: 10.1016/j.jtbi.2008.10.016 DOI: https://doi.org/10.1016/j.jtbi.2008.10.016
Packard, G. C. (2017). Misconceptions about logarithmic transformation and the traditional allometric method. Zoology, 217, 115-120. doi: 10.1016/j.zool.2017.07.005 DOI: https://doi.org/10.1016/j.zool.2017.07.005
Packard, G. C., & Boardman, T. J. (2008). Model selection and logarithmic transformation in allometric analysis. Physiological and Biochemical Zoology, 81(4), 496-507. doi: 10.1086/589110 DOI: https://doi.org/10.1086/589110
Packard, G. C., Birchard, G. F & Boardman, T. J. (2011). Fitting statistical models in bivariate allometry. Biological Reviews, 86(3), 549-563. doi: 10.1111/j.1469-185X.2010.00160.x DOI: https://doi.org/10.1111/j.1469-185X.2010.00160.x
Palmer, M. W., McGlinn, D. J., & Fridley, J. D. (2008). Artifacts and artifictions in biodiversity research. Folia Geobotanica, 43(3), 245-257. doi: 10.1007/s12224-008-9012-y DOI: https://doi.org/10.1007/s12224-008-9012-y
Parresol, B. R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45(4), 573-593.
Pastor, J., Aber, J. D., & Melillo, J. M. (1984). Biomass prediction using generalized allometric regressions for some north east tree species. Forest Ecology and Management, 7(4), 265-274. doi: 10.1016/0378-1127(84)90003-3 DOI: https://doi.org/10.1016/0378-1127(84)90003-3
Pattyn, F., & van Huele, W. (1998). Power law or power flaw? Earth Surface Processes and Landforms, 23(8), 761-767. doi: 10.1002/(SICI)1096-9837(199808)23:8<761::AID-ESP892>3.0.CO;2-K DOI: https://doi.org/10.1002/(SICI)1096-9837(199808)23:8<761::AID-ESP892>3.0.CO;2-K
Paul, K. I., Roxburgh, S. H, Chave, J., England, J. R., Zerihun, A., Specht, A., Lewis, T., Bennet, L. T., Baker, T. G., Adams, M. A., Hustable, D., Montagu, K. D., Falster, D. S., Feller, M., Sochacki, S., Ritson, P., Bastin, G., Bartle, J., Wildy, D., Hobbs, T., Larmour, J., Waterworth, R., Stewart, H. T. L., Jonson, J., O´Grady, D. A., Green, D., Sudmeyer, R., Rance, S. J., Turner, J., Barton, C., Wenk, E. H., Grove, T., Attiwill, P. M., Pinkard, E., Butler, D., Broodsbank, K., Spencer, B., Snowdon, P., O´Brien, N., Battaglia, M., Cameron, D. M., Hamilton, S., Mcauthur, G., & Sinclair, J. (2016). Testing the generality of above-ground biomass allometry across plant functional types at the continental scale. Global Change Biology, 22(6), 2106-2124. doi: 10.1111/gcb.13201 DOI: https://doi.org/10.1111/gcb.13201
Paz, F., Odi, M., Cano, A., Bolaños, M. A., & Zarco, A. (2009). Equivalencia ambiental en la productividad de la vegetación. Agrociencia, 43(6), 635-648.
Pelletier, J., Kirby, K. R & Potvin, C. (2010). Significance of carbon stock uncertainties on emission reductions from deforestation and forest degradation in developing countries. Forest Policy and Economics, 24, 3-11. doi: 10.1016/j.forpol.2010.05.005 DOI: https://doi.org/10.1016/j.forpol.2010.05.005
Peterson, H., Holm, S., Stahl, G., Alger, D., Fridman, J., Lehtonen, A., & Makipaa, A. (2012). Individual tree biomass equations of biomass expansion factors for assessment of carbon stock changes in living biomass – A comparative study. Forest Ecology and Management, 270, 78-84. doi: 10.1016/j.foreco.2012.01.004 DOI: https://doi.org/10.1016/j.foreco.2012.01.004
Picard, N., Boyemba, F. B., & Rossi, V. (2015a). Reducing the error in biomass estimates strongly depends on model selection. Annals of Forest Science, 72(6), 811-823. doi: ff10.1007/s13595-014-0434-9f DOI: https://doi.org/10.1007/s13595-014-0434-9
Picard, N., Henry, M., Mortier, F., Trotta, C., & Saint-Andre, L. (2012). Using Bayesian model averaging to predict tree aboveground biomass in tropical moist forests. Forest Science, 58(1), 15-23. doi: 10.5849/forsci.10-083 DOI: https://doi.org/10.5849/forsci.10-083
Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A., & Henry, M. (2015b). Should tree biomass allometry be restricted to power models? Forest Ecology and Management, 356, 156-163. doi: 10.1016/j.foreco.2015.05.035 DOI: https://doi.org/10.1016/j.foreco.2015.05.035
Pilli, R., Anfidillo, T., & Carrer, M. (2006). Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management, 237(1), 583-593. doi: 10.1016/j.foreco.2006.10.004 DOI: https://doi.org/10.1016/j.foreco.2006.10.004
Ploton, P., Barbier, N., Takoudjou, S. M., Réjou, M., Boyemba, F. B., Chuyong, G., Dauby, G., Droissart, V., Fayolle, A., Goodman, R. C., Henry, M., Kamdem, N. G., Mukirania, J. K., Kenfack, D., Libalah, M., Ngomanda, A., Rossi, V., Sonké, B., Texier, N., Thomas, D., Zebaze, D., Couteron, P., Berger, U., & Pélissier, R. (2016). Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences, 13(5), 1571-1585. doi: 10.5194/bg-13-1571-2016 DOI: https://doi.org/10.5194/bg-13-1571-2016
Price, C. A., Enquist, B. J., & Savage, V. M. (2007). A general model for allometric covariation in botanical form and function. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13204-13209. doi: 10.1073/pnas.0702242104 DOI: https://doi.org/10.1073/pnas.0702242104
Rojas-García, F., de Jong, B. H. J., Martínez, P. Z., & Paz, F. (2015). Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science, 72(6), 835-864. doi: 10.1007/s13595-015-0456-y DOI: https://doi.org/10.1007/s13595-015-0456-y
Schumacher, F. X., & Hall, F. S. (1933). Logarithmic expression of timber-tree volume. Journal of Agricultural Research, 47(9), 719-734.
Shen, H., & Zhu, Z. (2008). Efficient mean estimation in log-normal linear models. Journal of Statistical Planning and Inference, 138, 552-567. doi: 10.1016/j.jspi.2006.10.016 DOI: https://doi.org/10.1016/j.jspi.2006.10.016
Sheng, W., & Zheng, S. (2011). Bias correction in logarithmic regression and comparison with weighted regression for non-linear models. Nature Proceedings. doi: 10.1038/npre.2011.6708.1. DOI: https://doi.org/10.1038/npre.2011.6708.1
Sileshi, G. W. (2014). A critical review of forest biomass estimation models, common mistakes, and corrective measures. Forest Ecology and Management, 329, 237-254. doi: 10.1016/j.foreco.2014.06.026 DOI: https://doi.org/10.1016/j.foreco.2014.06.026
Smith, R. J. (1993). Logarithmic transformation bias in allometry. American Journal of Physical Anthropology, 90(2), 215-228. doi: 10.1002/ajpa.1330900208 DOI: https://doi.org/10.1002/ajpa.1330900208
Snowdon, P. (1991). A ratio estimator for bias correction in logarithmic regression. Canadian Journal of Forest Research, 21(5), 720-724. doi: 10.1139/x91-101 DOI: https://doi.org/10.1139/x91-101
Sprugel, D. G. (1983). Correcting for bias in log-transformed allometric equations. Ecology, 64(1), 209-210. doi: 10.2307/1937343 DOI: https://doi.org/10.2307/1937343
Temesgen, H., Affleck, D., Poudel, K., Gray, A., & Sessions, J. (2015). A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research, 30(4), 326-335. doi: 10.1080/02827581.2015.1012114 DOI: https://doi.org/10.1080/02827581.2015.1012114
Ter-Mikaelian, M. T., & Korzukhin, M. (1997). Biomass equations for sixty-five North American tree species. Forest Ecology and Management, 97(1), 1-24. doi: 10.1016/S0378-1127(97)00019-4 DOI: https://doi.org/10.1016/S0378-1127(97)00019-4
Thomas, S. C. 1996. Asymptotic height as a predictor of growth and biometric characteristics in Malaysian rain forest trees. American Journal of Botany, 83(5), 556-566. DOI: https://doi.org/10.1002/j.1537-2197.1996.tb12739.x
Tjeuw, J., Mulia, R., Slingerland, M., & van Noordwijk, M. (2015). Tree or shrub: a functional branch analysis of Jatropha curcas L. Agroforesty Systems, 89(5), 841-856. doi: 10.1007/s10457-015-9819-5 DOI: https://doi.org/10.1007/s10457-015-9819-5
Turlan, O. A. (2011). Ecuaciones alométricas para cuantificar biomasa aérea en siete poblaciones de Prosopis spp. en el norte-centro de México. Tesis de Ingeniero Forestal, División de Agronomía, Universidad Autónoma Agraria Antonio Narro Buenavista, Saltillo, Coahuila. 34 p.
van Breugel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. S. (2001). Estimating carbon stock in secondary forests: decisions and uncertainty associated with allometric biomass models. Forest Ecology and Management, 262(8), 1648-1657. doi: 0.1016/j.foreco.2011.07.018 DOI: https://doi.org/10.1016/j.foreco.2011.07.018
Vanninen, P., Ylitalo, H., Sievänen, R., & Mäkelä, A. (1996). Effects of age and quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees, 10(4), 231-238. doi: 10.1007/BF02185674 DOI: https://doi.org/10.1007/BF02185674
Vargas, B., Lope, C. A., Corral, J. J., Lopez, J. O., Aguirre, C. G., & Alvarez, J. G. (2017). Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests, 8(269). doi: 10.3390/f8080269. DOI: https://doi.org/10.3390/f8080269
Vargas, R., Alcaraz, D. S.,Birdsey, R., Brunsell, N. A., Cruz, C. O., de Jong, B., Etchevers, J., Guevara, M., Hayes, D. J., Johnson, K., Loescher, H. W., Paz, F., Ryu, Y, Sanchez, Z & Toledo, K. P. (2017). Enhancing interoperability to facilitate implementation of REDD+: case study of Mexico. Carbon Management, 8(1), 57–65. doi: 10.1080/17583004.2017.1285177 DOI: https://doi.org/10.1080/17583004.2017.1285177
Warton, D. I., Wright, I. J., Falster, D. S., & Westoby, M. (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81(2), 259-291. doi: 10.1017/S1464793106007007 DOI: https://doi.org/10.1017/S1464793106007007
Wayson, C. A., Carrillo, O. I., & Birdsey, R. A. (2015). Estimating uncertainty of allometric biomass equations with incomplete fit error information using a pseudo-data approach: methods. Annals of Forest Science, 72(6), 825–834. doi: 10.1007/s13595-014-0436-7 DOI: https://doi.org/10.1007/s13595-014-0436-7
West, G. B., Brown, J. H., & Enquist, B. J. (1999). A general model for the structure and allometry of plant vascular system. Nature, 400, 664-667. doi: 10.1038/23251 DOI: https://doi.org/10.1038/23251
White, J. F., & Gould, S. J. (1965). Interpretation of the coefficient in the allometric equation. American Naturalist, 99(904), 5-18. doi: 10.1086/282344 DOI: https://doi.org/10.1086/282344
Woods, K. D., Feiveson, A. H., & Botkin, D. B. (1991). Statistical error analysis for biomass density and leaf area index estimation. Canadian Journal of Forest Research, 21(7), 974-989. doi: 10.1139/x91-135 DOI: https://doi.org/10.1139/x91-135
Wutzler, T., Wirth,, C & Schumacher, J. (2008). Generic biomass functions for common beech (Fagus sylvatica L.) in Central Europe –predictions and components of uncertainty. Canadian Journal of Forest Research, 38(6), 1661-1675. DOI: https://doi.org/10.1139/X07-194
Zapata-Cuartas, C., Sierra, A., & Alleman, L. (2012). Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. Forest Ecology and Management, 277, 173-179. doi: 10.1016/j.foreco.2012.04.030 DOI: https://doi.org/10.1016/j.foreco.2012.04.030
Zar, J. H. (1968). Calculation and miscalculation of the allometric equation as a model in biological data. BioScience, 18(12), 1118-1120. doi: 10.2307/1294589 DOI: https://doi.org/10.2307/1294589
Zhang, Z., Zhong, Q., Niklas, K. J., Cai, L., Yang, Y & Cheng, D. (2016). A predictive nondestructive model for the covariation of tree height, diameter, and stem volumen scaling relationships. Scientific Reports, 6(1). doi: 10.1038/srep31008. DOI: https://doi.org/10.1038/srep31008
Zianis, D. (2008). Predicting mean aboveground forest biomass and its associated variance. Forest Ecology and Management, 256(6), 1400-1407. doi: 10.1016/j.foreco.2008.07.002 DOI: https://doi.org/10.1016/j.foreco.2008.07.002
Zianis, D., & Mencuccini, M. (2004). On simplifying analyses of forest biomass. Forest Ecology and Management, 187(2-3), 311-332. doi: 10.1016/j.foreco.2003.07.007 DOI: https://doi.org/10.1016/j.foreco.2003.07.007
Zianis, D., Muukkonen, P., Mäkipää, R., & Mencuccini, M. (2005). Biomass and stem volume equations for tree species in Europe. The Finnish Society of Forest Science. Silva Fennica Monographs 4. ISBN 951-40-1984-9. 63 p DOI: https://doi.org/10.14214/sf.sfm4
Publicado
Cómo citar
-
Resumen946
-
PDF377
-
LENS289
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.