Vol. 26 Núm. 3 (2020): Otoño 2020
Artículos Científicos

Efecto de rodales mixtos de haya y carpe en las propiedades del suelo y en los índices de diversidad de especies de plantas en bosques Hircanos, Irán

Simin Marefat
Urmia University
Biografía
Javad Eshaghi Rad
Urmia University
Biografía
Ameneh Khanalizadeh
Urmia University
Biografía
Bosque hircano

Publicado 2020-11-17

Palabras clave

  • biodiversity conservation,
  • herb layer diversity,
  • species composition,
  • species richness,
  • sustainable forestry
  • conservación de la biodiversidad,
  • diversidad del estrato herbáceo,
  • composición de especies,
  • riqueza de especies,
  • manejo forestal sustentable

Resumen

Determinar el efecto de los rodales mixtos de haya y carpe sobre la diversidad del estrato herbáceo es esencial para la conservación de la biodiversidad y la silvicultura sostenible. De este tema se conoce poco en los bosques Hyrcanian y, por ello, en este trabajo se estudian los efectos de los rodales mixtos de hayas y carpe sobre la diversidad del sotobosque y las propiedades fisicoquímicas del suelo en los bosques Hircanos, en Irán. Se establecieron 40 parcelas mediante un muestreo sistemático aleatorio con una retícula regular de 100 m × 200 m. En cada punto de muestreo, se registró la identidad de las especies y el porcentaje de cobertura de los estratos herbáceo y arbóreo, dentro de parcelas 400 m2 (20 m × 20 m) y 100 m2 (10 m × 10 m). Se tomaron muestras de suelo a profundidades de 0 cm - 10 cm y 10 cm - 30 cm. Se utilizó el análisis de conglomerados para clasificar las muestras con base en los datos de composición florística. También se empleó el método de análisis de correspondencia sin tendencia (DCA) para evaluar la relación entre la vegetación y las variables ambientales. No hubo diferencias significativas en términos de riqueza de especies, uniformidad y diversidad entre los rodales mixtos de hayas y de carpe, pero el análisis de conglomerados indicó que estos rodales estaban separados en dos grupos diferentes, basado en la composición de especies por estrato. Los resultados del DCA mostraron que el espesor de la hojarasca, la textura del suelo, el nitrógeno total y el carbono orgánico en la primera capa se consideraron variables ambientales efectivas en la distribución de las parcelas de muestreo en dos rodales. Se observó que la composición del estrato arbóreo y las características del suelo contribuyeron de manera crucial a las variaciones de la composición de las especies del sotobosque que pueden cambiar con los enfoques de manejo forestal con el tiempo. Por lo tanto, la composición del estrato arbóreo y los atributos del suelo pueden considerarse factores efectivos para controlar y evaluar la composición de las especies de plantas del sotobosque. Además, estos hallazgos podrían proporcionar directrices para la conservación de la diversidad de especies vegetales dentro de cualquier marco de ordenamiento forestal sostenible en los bosques Hircanos.

Citas

  1. Adel, M., Pourbabaei, H., Omidi, A., & Dey, C. (2013). Forest structure and woody plant species composition after a wildfire in beech forests in the north of Iran. Journal of Forestry Research, 24, 252-262. doi: 10.1007/s11676-012-0316-7
  2. Ali, A., Yan, E. R., Chang, S. X., Cheng, J. Y., & Liu, X. Y. (2017). Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Science of the Total Environment, 574, 654-662. doi: 10.1016/j.scitotenv.2016.09.022
  3. Amini, R., Rahmani, R., & Habashi, H. (2011). Nitrogen, phosphorus and carbon dynamics of hornbeam leaf litter (Case study: District one, Shastkalate forest, Gorgan). Iranian Journal of Forest and Poplar Research, 19(1), 94-103.
  4. Ampoorter, E., Baeten, L., Koricheva, J., Vanhellemont, M., & Verheyen, K. (2014). Do diverse overstoreys induce diverse understoreys? Lessons learnt from an experimental–observational platform in Finland. Forest Ecology and Management, 318, 206-215. doi: 10.1016/j.foreco.2014.01.030
  5. Augusto, L., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., & Ranger, J. (2015). Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forest. Biological Reviews, 90(2), 444-466. doi: 10.1111/brv.12119
  6. Barantal, S., Castagneyrol, B., Durka, W., Lason, G., Morath, S., & Koricheva, J. (2019). Contrasting effects on tree species and genetic diversity on the leaf – miner communities associated with silver birch. Oecologia, 189(3), 678-697. doi : 10.1007/s00442-019-04351-x
  7. Bartels, S. F. & Chen, H. Y. H. (2013). Interactions between overstorey and understorey vegetation along an overstorey compositional gradient. Journal of Vegetation Science, 24(3), 543-552. doi: 10.1111/j.1654-1103.2012.01479.x
  8. Bakhshandeh-Navroud, B., Abrari Vajari, K., & Kooch, Y. (2018). The interactions between tree-herb layer diversity and soil properties in the oriental beech (Fagus orientalis Lipsky.) stands in Hyrcanian forest. Environmental Monitoring and Assessment, 190(7), 1-10. doi: 10.1007/s10661-018-6809-x
  9. Bohara, M., Yadav, R. K. P., Dong, W., Cao, J., & Hu, C. (2019). Nutrient and isotopic dynamics of litter decomposition from different land uses in naturally restoring Taihang Mountain, North China. Sustainability, 11(6), 1-19. doi:10.3390/su11061752
  10. Dawud, S. M., Raulund-Rasmussen, K., Domisch, T., Fin`er, L., Jaroszewic, B., & Vesterdal, L. (2016). Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio and pH?. Ecosystems, 19 (4), 645–660. doi: 10.1007/s10021-016-9958-1
  11. Dölle, M., Petritan, M. A., Biris, A. L., & Petritan, C. I. (2017). Relations between tree canopy composition and understory vegetation in European beech-sessile oak old growth forest in Western Romania. Biologia, 72(12), 1422-1430. doi: 10.1515/biolog-2017-0165
  12. Enright, N. J., Miller, B. P., & Akhter, R. (2005). Desert vegetation and vegetation-environment relationships in Kirthar National Park, Sindh, Pakistan. Journal of Arid Environments, 61(3), 397-41. doi: 10.1016/j.jaridenv.2004.09.009
  13. Eshaghi Rad, J. (2014). Variations of understory vegetation composition and diversity in pure and mixed beech stands (Case Study: Kheyrud Forest- Noshahr). Iranian Journal of Forest, 6(1), 75-86.
  14. Fujii, K., Shibata, M., Kitajima, K., Ichie, T., Kitayama, K., & Turner, B. (2018). Plant-soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecological Research, 33, 149-160. doi: 10.1007/s11284-017-1511-y
  15. Gamfeldt, L., Snall, T., Bagci, R., Jonsson, M., Gustafsson, L., Kjellander, P & Mikusin`ski, G. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1-8. doi: 10.1038/ncomms2328
  16. Gilliam, F. S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience, 75(10), 845-858. doi: 10.1641/B571007
  17. Guendehou, G.S., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., & Makipaa, R. (2014). Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology, 55(2), 207–220.
  18. Habashi, H. & Waez-Mousavi, S.M. (2017). Single-tree selection system effects on forest soil macrofauna biodiversity in mixed oriental beech stands. Applied Soil Ecology, 123, 441-446. doi:10.1016/j.apsoil.2017.09.023
  19. Hattenschwiler, S. (2005). Effects of Tree Species Diversity on Litter Quality and Decomposition. Forest Diversity and Function, 176, 149-164. doi: 10.1007/3-540-26599-6_8
  20. Jacob, M., Viedenz, K., Polle, A., & Thomas, F. M. (2010). Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia, 164, 1083-1094. doi: 10.1007/s00442-010-1699-9
  21. Jafari, J., Tabari, M., Hosseini, S.M., & Kooch, Y. (2014). Effect of soil properties on plant diversity of ecological groups in the reserved forest of Northern Khorasan. Journal of Plant Biology, 28(1), 79-90.
  22. Kerdraon, D., Drewer, J., Castro, B., Wallwork, A., & Hall, J. (2019). Litter Traits of Native and Non-Native Tropical Trees Influence Soil Carbon Dynamics in Timber Plantations in Panama. Forests, 10 (3), 1-17. doi: 10.3390/f10030209
  23. Kooch, Y., Samadzadeh, B., & Hosseini, S M. (2017). The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150, 223-229. doi: 10.1016/j.catena.2016.11.023
  24. Kooch, Y., Sanji, R., & Tabari, M. (2019). The effect of vegetation change in C and N contents in litter and soil organic fractions of a Northern Iran temperate forest. Catena, 178, 32-39. doi: 10.1016/j.catena.2019.03.009
  25. Kooijman, A. K. & Cammeraat, E. (2010). Biological control of beech and hornbeam affects species richness via changes in the organic layer, PH and soil moisture characteristics. Functional Ecology, 24(2), 469-477. doi: 10.1111/j.1365-2435.2009.01640.x
  26. Lorenz, M. & Thiele-Bruhn, S. (2019). Tree species affect soil organic matter stocks and stoichiometry in interaction with soil microbiota. Geoderma, 353, 35-46. doi: 10.1016/j.geoderma.2019.06.021
  27. Lukac, M. (2017). Soil biodiversity and environmental change in European Forests. Central European Forestry Journal, 63(2), 59-65. doi: 10.1515/forj­2017­ 0010
  28. Marcos, J. A., Marcos, E., Taboada, A., & Tarrega, R. (2007). Comparsion of community structure and soil characteristics in different aged Pinus sylvestris plantations and a natural pine forest, Forest Ecology and Management, 274, 35-42. doi: 10.1016/j.foreco.2007.04.022
  29. Marozas, V., Augustatitis, A., Armolaitis, K., Kliucius, A., & Pilkauskas, M. (2013). Effects of planted European beech on the understory in Scots pine forests of Lithuania. Biogeosciences and Forestry, 7(1), 12-18. doi: 10.3832/ifor0695-007
  30. Mestre, L., Toro-Manríquez, M., Huertas-Herrera, A., Martínez-Pastur, G., & Lencinas, M. V. (2017). The influence of canopy-layer composition on understory plant diversity in Southern temperate forests. Forest Ecosystems, 4(6), 1-13. doi: 10.1186/s40663-017-0093-z
  31. Midolo, G., Alkemade, R., Schipper, A. M., Benitez-Lopez, A., Perring, M. P., & De vries, W. (2018). Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Global ecology and Biogeography, 28(3), 398- 413. doi: 10.1111/geb.12856
  32. Modabberi, A. & Minaie, H. (2014). Biodiversity and plant species richness study in relation to physiographic factors and soil physicochemical properties (KhoramAbad, Khankamandar region). Environmental Science and Engineering, 1(4), 19-27.
  33. Mölder, A., Bernhardt-Römerman, M., & Schmidt, W. (2008). Herb- layer diversity in deciduous forests: Raised by tree richness or beaten by beech?. Forest Ecology and Management, 256, 272-281. doi:10.1016/J. foreco.2008.04.012
  34. Petersen, H. & Luxton, M. (1892). A comparative analysis of soil fauna populations and their role in decomposition processes. OIKOS, 39, 287-388.
  35. Prado-Junior, J. A., Schiavini, I., Vale, V. S., Arantes, C. S., Sande, M. T., Lohbeck, M., & Poorter, L. (2016). Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104(3), 817-827. doi: 10.1111/1365-2745.12543
  36. Prescott, C. E. & Vesterdal, L. (2013). Tree species effects on soils in temperate and boreal forests: Emerging themes and research needs. Forest Ecology and Management, 309, 1–3. doi: 10.1016/j.foreco.2013.06.042
  37. Ramezani, E., Mohadjer, M. R., Knapp, H. D., Ahmadi, H., & Joosten, H. (2008). The late-Holocene vegetation history of the Central Caspian (Hyrcanian) forests of northern Iran. Holocene, 18(2), 307–321. doi: 10.1177/0959683607086768
  38. Rawlik, M., Kasprowicz, M., & Jagodzinski, A. M. (2018). Differentiation of herb layer vascular flora in reclaimed areas depends on the species composition of forest stands. Forest Ecology and Management, 409, 541-551. doi: 10.1016/j.foreco.2017.11.055
  39. Schmidt, W. (2005). Herb layer species as indicators of biodiversity of managed and unmanaged beech forest. Forest Snow Landscape Research, 79(1), 111-125.
  40. Scolastri, A., Bricca, A., Cancellieri, L., & Cutini, M. (2017). Understory functional response to different management strategies in Mediterranean beech forest (Central Apennines, Italy). Forest Ecology and Management, 400, 665-676. doi: 10.1016/j.foreco.2017.06.049
  41. Vahder, S. & Irmler, U. (2012). Effect of pure and multi species beech (Fagus sylvatica) stands on soil characteristics and earthworm in two northern German forests. European journal of soil Biology, 51, 45-50. doi: 10.1016/j.ejsobi.2012.03.008
  42. Versluijs, M., Roberge, J. M., Eggers, S., Boers, J., & Hjältén, J. (2019). Ecological restoration for biodiversity improves habitat quality for an insectivorous passerine in boreal forest. Biological Conservation, 237, 90-96. doi: 10.1016/j.biocon.2019.06.025
  43. Verstraeten, G., Baeten, L., De Frenne, P., Vanhellemont, M., Thomaes, A., Boonen, W., Muys, B., & Verheyen, K. (2013). Understory vegetation shifts following the conversion of temperate deciduous forest to spruce plantation. Forest Ecology and Management, 289, 363-370. doi: 10.1016/j.foreco.2012.10.049
  44. Wang, G., Li, H., An, M., Ni, J., Ji, S., & Wang, J. (2011). A regional-scale consideration of the effects of species richness on above-ground biomass in temperate natural grasslands of China. Journal of Vegetation Science, 22(3), 414-424. doi: 10.1111/j.1654-1103.2011.01279.x
  45. Xiao, W., Chen, H., Kumar, P., Chen, Ch., & Guan, Q. (2019). Multiple interactions between tree composition and diversity and microbial diversity underly litter decomposition. Geoderma, 341, 161-171. doi: 10.1016/j.geoderma.2019.01.045
  46. Yang, B., Li, Y., Ding, B., Both, S., Erfmeier, A., Hardtle, W., Ma, K., Schmid, B., Scholten, Th., & Seidler, G. (2017). Impact of tree diversity and environmental conditions on the survival of shrub species in a forest biodiversity experiment in subtropical china. Journal of Plant Ecology, 10(1), 179-189. doi: 10.1093/jpe/rtw099
  47. Zeller, L. & Pretzsch, H. (2019). Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity. Forest Ecology and Management, 434, 193-204. doi: 10.1016/j.foreco.2018.12.024
  48. Zhang, Q., Buyantuev, A., Li, F.Y., Jiang, L., Niu, J., Ding, Y., Kang, S., & Ma, W. (2017). Functional dominance rather than taxonomic diversity and functional diversity mainly affect community aboveground biomass in the Inner Mongolia grassland. Ecology and Evolution, 7(5), 1605-1615. doi: 10.1002/ece3.2778
  49. Zhang, Y., Zhang, C., Wang, Z., Chen, Y., Gang, C., An, R., & Li, J. (2016). Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Science of the Total Environment, 563, 210-220. doi: 10.1016/j.scitotenv.2016.03.223