Riqueza de especies y tipos funcionales: su relación en bosques de oyamel del Monte Tláloc, Estado de México
DOI:
https://doi.org/10.21829/myb.2021.2742427Palabras clave:
Abies religiosa, espacios paramétricos, estimaciones simplificadas, indicadores de diversidad, relación de exponentesResumen
La diversidad de plantas vasculares está relacionada con la productividad y resiliencia de los bosques, por lo tanto, el desarrollo de indicadores
para su caracterización es fundamental. La riqueza de especies vasculares (S) ha mostrado ser un buen indicador de la diversidad
de otros grupos biológicos. Asimismo, se ha propuesto que la riqueza de tipos funcionales de plantas (Sg), se correlaciona significativamente
con la riqueza de especies y, por lo tanto, puede ser usada como un indicador sustituto. En este trabajo se analiza la relación
riqueza-área de muestreo (A), con bases teóricas y datos empíricos para proponer un marco teórico generalizado de las relaciones entre
los parámetros de las curvas: S-A, Sg-A y S-Sg. Se evalúa el modelo potencial y el logarítmico de las curvas de acumulación riqueza-área
de especies de plantas vasculares y tipos funcionales, estos últimos caracterizados mediante una clasificación basada en 36 atributos
funcionales en 15 sitios de muestreo de 1000 m2 en bosques de oyamel del Monte Tláloc, Estado de México. Los resultados muestran
estimaciones de riqueza equiparables con las mediciones directas usando solamente un tipo de riqueza para estimar el otro. Esto puede
simplificar considerablemente la obtención de indicadores de diversidad en inventarios de plantas vasculares.
Descargas
Citas
Arrhenius, O. (1921). Species and area. Journal of Ecology, 9(1), 95-99. doi:10.2307/2255763 DOI: https://doi.org/10.2307/2255763
Baskerville, G. L. (1972). Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forestry, 2(1), 49-53. DOI: https://doi.org/10.1139/x72-009
Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., daFonseca, G. A. B., Rylands, A. B., Konstant, W. R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G., & Hilton-Taylor, G. (2001). Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16, 909-923. DOI: https://doi.org/10.1046/j.1523-1739.2002.00530.x
Byng, J., Chase, M., Christenhusz, M., Fay, M., Judd, W., Mabberley, D., Sennikov, A., Soltis, D., Soltis, P., & Stevens, P. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1-20. doi:10.1111/boj.12385 DOI: https://doi.org/10.1111/boj.12385
Connor, E. F., & McCoy, E. D. (1979). The statistics and biology of the species-area relationship. The American Naturalist, 113(6), 791-833. DOI: https://doi.org/10.1086/283438
Convention on Biological Diversity [CBD]. (2010). Global Biodiversity Outlook 3. Montreal, Quebec, Canada: Secretariat of the Convention on Biological Diversity.
Cooper, H. D., & Noonan-Mooney, K. (2013). Convention on Biological Diversity. In S. A., Levin (Ed.), Encyclopedia of Biodiversity (2nd ed.) (pp. 306-319). Waltham, MA: Academic Press. DOI: https://doi.org/10.1016/B978-0-12-384719-5.00418-4
Cresswell, J. E., Vidal-Martinez, V. M., & Crichton, N. J. (1995). The investigation of saturation in the species richness of communities: some comments on methodology. Oikos, 72(2), 301-304. DOI: https://doi.org/10.2307/3546234
Croezen, H., Bergsma, G., Clemens, A., Sevenster, M., & Tulleners, B. (2011). Biodiversity and land use. A search for suitable indicators for policy use. Delft: CE Delft.
Dengler, J. (2008). Pitfalls in Small-Scale Species-Area Sampling and Analysis. Folia Geobotanica, 43, 269-287. doi:10.1007/s12224-008-9014-9 DOI: https://doi.org/10.1007/s12224-008-9014-9
Dengler, J. (2009). Which function describes the species-area relationship best? A review and empirical evaluation. Journal of Biogeography, 36: 728-744. doi:10.1111/j.1365-2699.2008.02038.x DOI: https://doi.org/10.1111/j.1365-2699.2008.02038.x
Díaz, S., & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16(11), 646-655. DOI: https://doi.org/10.1016/S0169-5347(01)02283-2
Dobson, A. (2005). Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1454): 229-241. DOI: https://doi.org/10.1098/rstb.2004.1603
Drakare, S., Lennon, J. L., & Hillebrand, H. (2006). The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecology Letters, 9(2), 215-227. DOI: https://doi.org/10.1111/j.1461-0248.2005.00848.x
Dumortier, M., Butaye, J., Jacquemyn, H., Van-Camp, N., Lust, N., & Hermy, M. (2002). Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium. Forest Ecology and Management, 158(1-3), 85-102. DOI: https://doi.org/10.1016/S0378-1127(00)00674-5
Franklin, J. F. (1988) Structural and functional diversity in temperate forests. In E. O. Wilson, & F. M. Peter (Eds.) Biodiversity (pp. 166-175). Washington, D.C.: National Academy Press.
Gao, T., Nielsen, A. B., & M. Hedblom. (2015). Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe. Ecological Indicators, 57, 420-434. doi:10.1016/j.ecolind.2015.05.028 DOI: https://doi.org/10.1016/j.ecolind.2015.05.028
Gillison A. N., Bignell, D. E., Brewer, K. R. W., Fernandes, E. C. M., Jones, D. T., Sheiz, D., May, P. H., Watt, A. D., Constantino, R., Couto, E. G., Hairiah, K., Jepson, P., Kartono, A. P., Maryauto, I., Neto, G. G., van Noordwisk, M., Silveira, E. A., Susilo, F. X., Vosti, S. A., & Nunes, P. C. (2013). Plant functional types and traits as biodiversity indicators for tropical forests: two biogeographically separated case studies including birds, mammals and termites. Biodiversity and Conservation, 22(9), 1909-1930. doi:10.1007/s10531-013-0517-1 DOI: https://doi.org/10.1007/s10531-013-0517-1
Gillison, A. N. (1981). Towards a functional vegetation classification. In A. N. Gillison, & D. J. Anderson (Eds). Vegetation classification in Australia (pp. 30-41). Canberra, Australia: CSIRO and Australian National University Press.
Gillison, A. N. (2002). A generic, computer assisted method for rapid vegetation classification and survey: tropical and temperate case studies. Conservation Ecology, 6(2), 1-17. DOI: https://doi.org/10.5751/ES-00428-060203
Gillison, A. N. (2006). A field manual for rapid vegetation classification and survey for general purposes. Jakarta, Indonesia: Center for International Forestry Research.
Gillison, A. N. (2016). Vegetation functional types and traits at multiple scales. In E. O. Box (Ed.), Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales, Geobotany Studies (pp. 53-97). Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-21452-8_2
Gillison, A. N., & Carpenter, G. (1997). A generic plant functional attribute set and grammar for dynamic vegetation description and analysis. Functional Biology, 11, 775-783. DOI: https://doi.org/10.1046/j.1365-2435.1997.00157.x
Gillison, A. N., & Liswanti, N. (2004). Assessing biodiversity al landscape level in northern Thailand and Sumatra (Indonesia): the importance of environmental context. Agriculture Ecosystems & Environment, 104(1), 75-86. DOI: https://doi.org/10.1016/j.agee.2004.01.008
Gillison, A. N., Jones, D. T., Susilo, F. X., & Bignell, D. E. (2003). Vegetation indicates diversity of soil macroinvertebrates: a case study with termites along land-use intensification gradient in lowland Sumatra. Organisms Diversity & Evolution, 3(2), 111-126. DOI: https://doi.org/10.1078/1439-6092-00072
Gitay, H., & Noble, I. R. (1997). What are plant functional types and how should we seek them? In T. M. Smith, H. H. Shugart, & F. I. Woodward (Eds.), Plant Functional Types (pp. 3-19). Cambridge, UK: Cambridge University Press.
Gleason, H. A. (1922). On the relationship between species and area. Ecology, 3(2), 158-162. doi:10.2307/1929150 DOI: https://doi.org/10.2307/1929150
Gould, S. J. (1979). An allometric interpretation of species-area curves: the meaning of the coefficient. The American Naturalist, 114(3), 335-343. DOI: https://doi.org/10.1086/283482
Hooper, D. U., Chapin III, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., & Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75(1), 3-35. doi:10.1890/04-0922 DOI: https://doi.org/10.1890/04-0922
Hopkins, B. (1955). The species-area relations of plant communities. Journal of Ecology, 43, 409-426. DOI: https://doi.org/10.2307/2257004
Koh, L. P., & Ghazoul, J. A. 2010. Matrix-calibrated species-area model for predicting biodiversity losses due to land-use change. Conservation Biology, 24(4), 994-1001. DOI: https://doi.org/10.1111/j.1523-1739.2010.01464.x
Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12(12), 474-478. doi:10.1016/s0169-5347(97)01219-6 DOI: https://doi.org/10.1016/S0169-5347(97)01219-6
Lawton, J. H. (1999). Are there general laws in ecology? Oikos, 84(2), 177-192. DOI: https://doi.org/10.2307/3546712
Lewandowski, A. S., Noss, R. F., & Parsons, D. R. (2010). The Effectiveness of Surrogate Taxa for the Representation of Biodiversity. Conservation Biology, 24(5), 1367-1377. doi:10.1111/j.1523-1739.2010.01513.x DOI: https://doi.org/10.1111/j.1523-1739.2010.01513.x
Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E., McGuire, A. D., Bozzato, F., Pretzsch, H., de Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C. B., Glick, H. B., Hengeveld, G. M., Nabuurs, G., Pfautsch, S., Viana, H., Vibrans, A. C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J. V., Chen, H. Y. H., Lei, X., Schelhaas, M., Lu, H., Gianelle, D., Parfenova, E. I., Salas, C., Lee, E., Lee, B., Kim, H. S., Bruelheide, H., Coomes, D. A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S., Sonké, B., Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E. B., Neldner, V. J., Ngugi, M. R., Baraloto, C., Frizzera, L., Bałazy, R., Oleksyn, J., Zawiła-Niedźwiecki, T., Bouriaud, O., Bussotti, F., Finér, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A. M., Peri, P. L., Gonmadje, C., Marthy, W., O’Brien, T., Martin, E. H., Marshall, A. R., Rovero, F., Bitariho, R., Niklaus, P. A., Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N. L., Ferreira, L. V., Odeke, D. E., Vasquez, R. M., Lewis, S. L., & Reich, P. B. (2016). Positive biodiversity-productivity relationship predominant in global forests. Science, 354(6309): 196-208. doi: 10.1126/science.aaf8957 DOI: https://doi.org/10.1126/science.aaf8957
Lindenmayer, D. B., & Likens, G. E. 2011. Direct Measurement Versus Surrogate Indicator Species for Evaluating Environmental Change and Biodiversity Loss. Ecosystems, 14, 47-59. doi:10.1007/s10021-010-9394-6 DOI: https://doi.org/10.1007/s10021-010-9394-6
Loehle, C. (1990). Proper statistical treatment of species-area data. Oikos, 57(1), 143-145. DOI: https://doi.org/10.2307/3565750
Lomolino, M. V. (2000). Ecology’s most general, yet protean pattern: the species-area relationship. Journal of Biogeography, 27(1), 17-26. DOI: https://doi.org/10.1046/j.1365-2699.2000.00377.x
Lomolino, M. V. (2001). The species-area relationship: new challenges for an old pattern. Progress in Physical Geography, 25(1), 1-21. DOI: https://doi.org/10.1191/030913301666288491
Lot, A., & Chiang, F. (Eds.). (1986). Manual de herbario: Administración y manejo de colecciones, técnicas de recolección y preparación de ejemplares botánicos. D.F., México: Consejo Nacional de Flora de México.
Lumer, H. (1936). The relation between b and k in systems of relative growth functions of the form Y = bXk. The American Naturalist, 70(727), 188-191. DOI: https://doi.org/10.1086/280654
Lumer, H., Anderson, B. G., & Hersh, A. H. (1942). On the significance of the constant b in the law of allometry Y=bxk. American Naturalist, 76, 364-375. doi: 10.1086/281053 DOI: https://doi.org/10.1086/281053
MacArthur, R. H., & Wilson, E.O. (1967). The Theory of Island Biogeography. Princenton, N. J. Princeton University Press.
Mace, G. M., & Baillie, J. E. M. (2007). The 2010 biodiversity indicators: challenges for science and policy. Conservation Biology, 21(6), 1406-1413. DOI: https://doi.org/10.1111/j.1523-1739.2007.00830.x
McGuinness, K. (1984). Equations and explanations in the study of species-area curves. Biological. Reviews, 59, 423-440. doi:10.1111/j.1469-185X.1984.tb00711.x DOI: https://doi.org/10.1111/j.1469-185X.1984.tb00711.x
Missouri Botanical Garden [MBG] (2018). Herbario virtual del Jardín Botánico de Missouri. Recuperado de: http://www.tropicos.org.
National Research Council [NRC]. 2000. Ecological Indicators for the Nation. Washington, DC: The National Academies Press. doi:10.17226/9720. DOI: https://doi.org/10.17226/9720
Newton, A. C., & Kapos, V. (2002). Biodiversity indicators in national forest inventories. Recuperado de: http://www.fao.org/forestry/3946-0e7f052eeb66d8935170504e3d01ab348.pdf
Noss, R. F. (1990). Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conservation Biology, 4(4), 355-364. doi:10.1111/j.1523-1739.1990.tb00309.x. DOI: https://doi.org/10.1111/j.1523-1739.1990.tb00309.x
Ohlemüller, R., Bannister, P., Dickinson, K. J. M., Walker, S., Anderson, B. J., & Wilson, J. B. (2004). Correlates of vascular plant species richness in fragmented indigenous forests: assessing the role of local and regional factors. Community Ecology, 5(1), 45-54. doi:10.1556/ComEc.5.2004.1.5 DOI: https://doi.org/10.1556/ComEc.5.2004.1.5
Palmer, M. W., McGlinn, D. J., & Fridley, J. D. (2008). Artifacts and Artifictions in Biodiversity Research. Folia Geobotanica, 43(3), 245-257. doi:10.1007/s12224-008-9012-y DOI: https://doi.org/10.1007/s12224-008-9012-y
Paz-Pellat, F., Odi-Lara, M., Cano-González, A., Bolaños-González, M. A., & Zarco-Hidalgo, A. (2009). Equivalencia ambiental en la productividad de la vegetación. Agrociencia, 43(6), 635-648.
Pearson, T. R. H., Brown, S. L., & Birdsey, R. A. (2007). Measurement guidelines for the sequestration of forest carbon. Gen. Tech. Rep. NRS-18. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. DOI: https://doi.org/10.2737/NRS-GTR-18
Pereira, H. M., & Daily, G. C. (2006). Modeling biodiversity dynamics in countryside landscapes. Ecology, 87(8), 1877-1885. doi:10.1890/0012-9658(2006)87[1877:mbdicl]2.0.co;2 DOI: https://doi.org/10.1890/0012-9658(2006)87[1877:MBDICL]2.0.CO;2
Phillips, O. L., Hall, P., Gentry, A. H., Sawyer, S. A., & Vásquez, R. (1994). Dynamics and species richness of tropical rain forests. Proceedings of the National Academy of Sciences, 91(7), 2805-2809. doi:10.1073/pnas.91.7.2805 DOI: https://doi.org/10.1073/pnas.91.7.2805
Preston, F. W. (1962). The canonical distribution of commonness and rarity. Ecology, 43(2), 185-215. DOI: https://doi.org/10.2307/1931976
Price, C. A., Enquist, B. J., & Savage, V. M. (2007). A general model for allometric covariation in botanical form and function. Proceedings of the National Academy of Sciences, 104(32), 13204-13209. doi:10.1073/pnas.0702242104 DOI: https://doi.org/10.1073/pnas.0702242104
Programa Mexicano del Carbono [PMC] (2015). Una REDD para SALVAR la SOMBRA de la Sierra Madre de Chiapas. Manual de Procedimientos Inventario de Biodiversidad. Recuperado de: http://pmcarbono.org/pmc/descargas/proyectos/redd/MANUAL_Inventario_de_Biodiversidad_1.0_Cafetales.pdf
Raunkiær, C. (1934). The Life Forms of Plants and Statistical Plant Geography. Oxford: Clarendon Press.
Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge, UK: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511623387
Rybicki, J., & Hansi, I. (2013). Species-area relationships and extinctions caused by habitat loss and fragmentation. Ecology Letters, 16, 27-38. doi:10.1111/ele.12065 DOI: https://doi.org/10.1111/ele.12065
Saetersdal, M., & I. Gjerde, (2011). Prioritising conservation areas using species surrogate measures: consistent with ecological theory? Journal of Applied Ecology, 48, 1236-1240. doi:10.1111/j.1365-2664.2011.02027.x DOI: https://doi.org/10.1111/j.1365-2664.2011.02027.x
Sala, O. E., van Vuuren, D., Pereira, H. M., Lodge, D., Alder, J., Cumming, G., Dobson, A., Volters, W., Xenopoulos, M., & Zaetsev, A. S. (2005). Biodiversity across scenarios. In S. Carpenter, L. P. Prabhu, E. M. Bennet & M. B. Zurek (Eds.), Ecosystem and Human Well-Being Scenarios (pp. 375-408). Washington, DC: Island Press.
Sánchez-González, A. y López-Mata, L. 2003. Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo de un gradiente altitudinal. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica, 74(1), 43-71.
Santi, E., Maccherini, S., Rocchini, D., Bonini, I., Brunialti, G., Favilli, L., Perini, C., Pezzo, F., Piazzini, S., Rota, E., Salerni, E., & Chiarucci, A. (2010). Simple to sample: vascular plants as surrogate group in a nature reserve. Journal for Nature Conservation, 18(1), 2-11. doi:10.1016/j.jnc.2009.02.003 DOI: https://doi.org/10.1016/j.jnc.2009.02.003
Scheiner, S. M. (2003). Six types of species-area curves. Global Ecology and Biogeography, 12, 441-447. doi:10.1046/j.1466-822X.2003.00061.x DOI: https://doi.org/10.1046/j.1466-822X.2003.00061.x
Schoener, T. W. (1976). The species-area relationship within archipelagoes: models and evidence from island birds. (pp. 629-642). Proceedings of the XVI International Ornithological Congress 6.
Shugart, H. H. (1996). Plant and ecosystem functional types. In T. M. Smith, H. H. Shugart, & F. I. Woodward (Eds.), Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change (pp. 20-43). Cambridge, UK: Cambridge University Press.
Smith, A. B. (2010). Caution with curves: caveats for using the species-area relationship in conservation. Biological Conservation, 143(3), 555-564. doi:10.1016/j.biocon.2009.11.003 DOI: https://doi.org/10.1016/j.biocon.2009.11.003
Smith, T. M., Shugart, H. H., Woodward, F. I. & Burton, P. J. 1993. Plant functional types. In Solomon, A. M. & Shugart, H. H. (Eds.), Vegetation dynamics and global change (pp. 272-292). New York, NY: Chapman and Hall. DOI: https://doi.org/10.1007/978-1-4615-2816-6_14
Specht, A., & Specht, R. L. (1993). Species richness and canopy productivity of Australian plant communities. Biodiversity and Conservation, 2, 152-167. DOI: https://doi.org/10.1007/BF00056131
Specht, R. L. & A. Specht. (2013). Australia, biodiversity of ecosystems. In S. A. Levin, (Ed.), Encyclopedia of Biodiversity (pp. 291-306). Amsterdam: Elsevier/Academic Press. DOI: https://doi.org/10.1016/B978-0-12-384719-5.00285-9
Specht, R. L. (1972). Water use by perennial evergreen plant communities in Australia and Papua New Guinea. Australian Journal of Botany, 20(3) 273-299. doi:10.1071/BT9720273 DOI: https://doi.org/10.1071/BT9720273
Specht, R. L. (1994). Species richness of vascular plants and vertebrates in relation to canopy productivity. In: M. Arianoutsou, & R. H. Groves, Plant-Animal Interactions in Mediterranean-Type Ecosystems (pp. 15-24). Netherlands: Kluwer Academic Publishers. DOI: https://doi.org/10.1007/978-94-011-0908-6_2
Specht, R. L. (2012). Biodiversity of Terrestrial Ecosystems in Tropical to Temperate Australia. International Journal of Ecology, 1-15. doi:10.1155/2012/359892 DOI: https://doi.org/10.1155/2012/359892
Specht, R. L., & A. Specht. (1989). Species richness of sclerophyll (heathy) plant communities in Australia–the influence of overstorey cover. Australian Journal of Botany, 37, 337-350. doi:10.1071/bt9890337 DOI: https://doi.org/10.1071/BT9890337
Sprugel, D. G. (1983). Correcting for bias in log-transformed allometric equations. Ecology, 64(1), 209-210. doi:10.2307/1937343 DOI: https://doi.org/10.2307/1937343
Thompson, I., Mackey, B., McNulty, S., & Mosseler, A. (2009). Forest Resilience, Biodiversity, and Climate Change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Montreal, Canada: Secretariat of the Convention on Biological Diversity.
Tilman, D., & Lehman, C. L. (1997). Habitat destruction and species extinctions. In D. Tilman, & P. Kareiva (Eds.), Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (pp. 233-249). New Jersey: Princeton University Press. DOI: https://doi.org/10.2307/j.ctv36zpzm.17
Tilman, D., Knops, J., Wedin, D., & Reich, P. 2002. Plant diversity and composition: effects on productivity and nutrient dynamics of experimental grasslands. In: M. Loreau, S. Naeem, & P. Inchausti (Eds.) Biodiversity and Ecosystem Functionals (pp. 21-35). Oxford, UK: Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198515708.003.0003
Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371, 65-66. doi:10.1038/371065a0 DOI: https://doi.org/10.1038/371065a0
Tjørve, E. (2003). Shapes and functions of species-area curves: a review of possible models. Journal of Biogeography, 30, 827-835. doi:10.1046/j.1365-2699.2003.00877.x DOI: https://doi.org/10.1046/j.1365-2699.2003.00877.x
Tjørve, E. (2009). Shapes and functions of species-area curves (II): a review of new models and parameterizations. Journal of Biogeography, 36, 1435-1445. doi: 10.1111/j.1365-2699.2009.02101.x DOI: https://doi.org/10.1111/j.1365-2699.2009.02101.x
Tjørve, E. (2010). How to resolve the SLOSS debate: lessons from species-diversity models. Journal of Theoretical Biology, 264(2):604-12. doi: 10.1016/j.jtbi.2010.02.009 DOI: https://doi.org/10.1016/j.jtbi.2010.02.009
Triantis, K. A., Guilhaumon, F., & Whittaker, R. J. (2012). The island species-area relationship: biology and statistics. Journal of Biogeography, 39, 215-231. doi:10.1111/j.1365-2699.2011.02652.x DOI: https://doi.org/10.1111/j.1365-2699.2011.02652.x
Turner, W. R., & Tjørve, E. (2005). Scale-dependence in species-area relationships. Ecography, 28(6), 721-730. DOI: https://doi.org/10.1111/j.2005.0906-7590.04273.x
United Nations, Treaty Series [UNTC]. 1992. Convention on Biological Diversity. Rio de Janeiro: UNTC.
White, J. F., & Gould, S. J. (1965). Interpretation of the coefficient in the allometric equation. The American Naturalist, 99(904), 5-18. DOI: https://doi.org/10.1086/282344
Williamson, M., Gaston, K. J., & Lonsdale, W. M. (2001). The species-area relationship does not have an asymptote! Journal of Biogeography, 28, 827-830. doi:10.1046/j.1365-2699.2001.00603.x DOI: https://doi.org/10.1046/j.1365-2699.2001.00603.x
Williamson, M., Gaston, K. J., & Lonsdale, W. M. (2002). An asymptote is an asymptote and not found in species-area relationships. Journal of Biogeography, 29(12), 1713-1713. doi:10.1046/j.1365-2699.2002.00798.x DOI: https://doi.org/10.1046/j.1365-2699.2002.00798.x
Wright, S. J. (1981). Intra-archipelago vertebrate distributions: the slope of the species-area relation. The American Naturalist, 118(5), 726-748. DOI: https://doi.org/10.1086/283864
Zhang, Z., Zhong, Q., Niklas, K. J., Cai, L., Yang, Y., & Cheng, D. (2016). A predictive nondestructive model for the covariation of tree height, diameter and stem volume scaling relationships. Scientific Reports, 6(1), 1-9. doi:10.1038/srep31008 DOI: https://doi.org/10.1038/srep31008
Publicado
Cómo citar
-
Resumen1103
-
PDF380
-
LENS2151
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.