Disponibilidad de luz bajo dosel en rodales de Abies religiosa
DOI:
https://doi.org/10.21829/myb.2018.2431711Palabras clave:
cobertura del dosel, fotografías hemisféricas, haces de luz, índice de área foliar, oyamel, sotobosqueResumen
La disponibilidad de luz en los bosques es uno de los principales factores que influyen en el establecimiento y desarrollo de especies vegetales bajo el dosel forestal. A fin de caracterizar el ambiente lumínico bajo el dosel de Abies religiosa (Kunth) Schltdl. et Cham., así como la estructura del dosel y su relación con la diversidad vegetal a nivel del sotobosque, se establecieron sitios de muestreo en los cuales se colectó información para evaluar atributos del rodal como área basal, densidad y diámetro cuadrático. Además, se determinaron, mediante fotografías digitales hemisféricas, los parámetros estructurales del dosel, índice de área foliar, fracción de apertura del dosel e índice de transmisión de luz; los parámetros lumínicos bajo el dosel: radiación directa y difusa, frecuencia, distribución de haces de luz, parches de luz, claros de luz y claros; duración media acumulada diaria de haces de luz y duración promedio de un haz de luz. Se determinó la relación existente entre las variables de estudio mediante regresión lineal simple y de asociación de estas a partir del coeficiente de correlación de Pearson. Los resultaron mostraron relaciones significativas entre parámetros estructurales del dosel (p < 0.001) y parámetros lumínicos; mientras que las relaciones de parámetros de estructura del rodal y parámetros lumínicos (p < 0.05) tuvieron una menor correlación (r ≈ 0.50). La fracción de apertura del dosel fue el mejor predictor para el índice de área foliar, radiación directa y difusa disponible en el sotobosque, así como para el índice de transmisión de luz del dosel. La variabilidad del régimen de luz bajo dosel fue mejor explicada por los parámetros de la estructura que por las características estructurales del rodal.
Descargas
Citas
Bartemucci, P., Messier, C., Canham, C. D., Bartemucci, P., & Canham, C. D. (2006). Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Canadian Journal of Forest Research, 36, 2065–2079. doi: 10.1139/X06-088 DOI: https://doi.org/10.1139/x06-088
Baudry, O., Charmetant, C., Collet, C., & Ponette, Q. (2014). Estimating light climate in forest with the convex densiometer: Operator effect, geometry and relation to diffuse light. European Journal of Forest Research, 133(1), 101–110. doi: 10.1007/s10342-013-0746-6 DOI: https://doi.org/10.1007/s10342-013-0746-6
Beaudet, M., Harvey, B. D., Messier, C., Coates, K. D., Poulin, J., Kneeshaw, D. D., … Bergeron, Y. (2011). Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: A modelling approach. Forest Ecology and Management, 261(1), 84–94. doi: 10.1016/j.foreco.2010.09.033 DOI: https://doi.org/10.1016/j.foreco.2010.09.033
Beaudet, M., & Messier, C. (2002). Variation in canopy openness and light transmission following selection cutting in northern hardwood stands: An assessment based on hemispherical photographs. Agricultural and Forest Meteorology, 110(3), 217–228. doi: 10.1016/S0168-1923(01)00289-1 DOI: https://doi.org/10.1016/S0168-1923(01)00289-1
Bellow, J. G., & Nair, P. K. R. (2003). Comparing common methods for assessing understorey light availability in shaded-perennial agroforestry systems. Agricultural and Forest Meteorology, 114, 197–211. DOI: https://doi.org/10.1016/S0168-1923(02)00173-9
Bonham, C. D. (2013). Measurements for terrestrial vegetation (2a ed.). West Sussex, UK: John Wiley & Sons Inc. DOI: https://doi.org/10.1002/9781118534540
Buckley, D. (1999). Practical field methods of estimating canopy cover, PAR, and LAI in Michigan oak and pine stands. Northern Journal of Applied Forestry, 16, 25–32. DOI: https://doi.org/10.1093/njaf/16.1.25
Canham, C. D. (1988). An index for understory light levels in and aroung canopy gaps. Ecology, 69(5), 1634–1638. doi: 10.2307/1941664 DOI: https://doi.org/10.2307/1941664
Canham, C. D., & Burbank, D. H. (1994). Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Canadian Journal of Forest Research, 24(2), 337–349. DOI: https://doi.org/10.1139/x94-046
Canham, C. D., Denslow, J. S., Platt, W. J., Runkle, J. R., Spies, T. A., & White, P. S. (1990). Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian Journal of Forest Research, 20, 620–631. DOI: https://doi.org/10.1139/x90-084
Castaños, M. L. J., & Castro, Z. S. (2014). Manejo Forestal Reserva Forestal Multifuncional, “El Manantial S.C.”: Conceptos, conductas y acciones. Zapopan, Jalisco: Comisión Nacional Forestal - Programa de las Naciones Unidas para el Desarrollo. doi: 10.1017/CBO9781107415324.004 DOI: https://doi.org/10.1017/CBO9781107415324.004
Chazdon, R. L. (1988). Sunflecks and their importance to forest understorey plants. En M. Begon, A. H. Fitter, E. D. Ford, & A. Macfadyen (Eds.), Advances in Ecological Research. London: Academic Press Inc. doi: 10.1016/S0065-2504(08)60179-8 DOI: https://doi.org/10.1016/S0065-2504(08)60179-8
Chazdon, R. L., & Pearcy, R. W. (1991). The importance of sunflecks for forest understory plants. BioScience, 41(11), 760–766. doi: 10.2307/1311725 DOI: https://doi.org/10.2307/1311725
Chazdon, R. L., Pearcy, R. W., Lee, D. W., & Fetcher, N. (1996). Photosynthetic responses of tropical forest plants to contrasting light environments. En S. S. Mulkey, R. L. Chazdon, & A. P. Smith (Eds.), Tropical forest plant ecophysiology (pp. 1–55). Boston, MA: Chapman & Hall.
Chazdon, R. L., Pearcy, R. W., Lee, D. W., & Fetcher, N. (1996). Photosynthetic Responses of Tropical Forest Plants to Contrasting Light Environments. En S. S. Mulkey, R. L. Chazdon, & A. P. Smith (Eds.), Tropical Forest Plant Ecophysiology (pp. 5–55). Boston, MA: Springer US. doi: 10.1007/978-1-4613-1163-8_1 DOI: https://doi.org/10.1007/978-1-4613-1163-8_1
Chen, H. Y. H. (2014). Characteristics of light availability under forest canopies and its influences on photosynthesis of understory plants characteristics of light availability under forest canopies and its influences on photosynthesis of understory plants. Forestry Studies in China, 5(3)(January 2003), 54–62.
Chianucci, F., & Cutini, A. (2013). Estimation of canopy properties in deciduous forests with digital hemispherical and cover photography. Agricultural and Forest Meteorology, 168, 130–139. doi: 10.1016/j.agrformet.2012.09.002 DOI: https://doi.org/10.1016/j.agrformet.2012.09.002
Comeau, P. G. (2001). Relationships between stand parameters and understorey light in boreal aspen stands. Journal of Ecosystems and Management, 1(2), 1–8. DOI: https://doi.org/10.22230/jem.2002v1n2a240
Comeau, P. G., Gendron, F., & Letchford, T. (1998). A comparison of several methods for estimating light under a paper birch mixedwood stand. Canadian Journal Of Forest Research Revue Canadienne De Recherche Forestiere, 28(12), 1843–1850. doi: 10.1139/x98-159 DOI: https://doi.org/10.1139/x98-159
Comeau, P., Heineman, J., & Newsome, T. (2006). Evaluation of relationships between understory light and aspen basal area in the British Columbia central interior, 226, 80–87. doi: 10.1016/j.foreco.2005.12.060 DOI: https://doi.org/10.1016/j.foreco.2005.12.060
Denny, C. K., & Nielsen, S. E. (2017). Spatial heterogeneity of the forest canopy scales with the heterogeneity of an understory shrub based on fractal analysis. Forests, 8(5). doi: 10.3390/f8050146 DOI: https://doi.org/10.3390/f8050146
Fahey, R. T., & Puettmann, K. J. (2007). Ground-layer disturbance and initial conditions influence gap partitioning of understorey vegetation. Journal of Ecology, 95(5), 1098–1109. doi: 10.1111/j.1365-2745.2007.01283.x DOI: https://doi.org/10.1111/j.1365-2745.2007.01283.x
Organización de las Naciones Unidas para la Alimentación y la Agricultura - Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura [FAO-Unesco] (1998). Revised legend of FAO-UNESCO soil map of the world. International Soil Reference and Information Centre. Roma: FAO.
Forrester, D. I., Guisasola, R., Tang, X., Albrecht, A. T., Dong, T. L., & le Maire, G. (2014). Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies. Forest Ecosystems, 1(1), 1–19. doi: 10.1186/s40663-014-0017-0 DOI: https://doi.org/10.1186/s40663-014-0017-0
Frazer, G. W., Canham, C. D., & Lertzman, K. P. (1999). Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Users Manual and Program Documentation, Version 2.0. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York.
Frazer, G. W., Fournier, R. A., Trofymow, J. A., & Hall, R. J. (2001). A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agricultural and Forest Meteorology, 109(4), 249–263. doi: 10.1016/S0168-1923(01)00274-X DOI: https://doi.org/10.1016/S0168-1923(01)00274-X
Freese, F. (1976). Elementary Forest Sampling. Agriculture Handbook U.S Departement of Agriculture (Forest Service). doi: 10.1016/j.foreco.2010.08.035 DOI: https://doi.org/10.1016/j.foreco.2010.08.035
García, E. (1964). Modificaciones al sistema de clasificación climática de Köppen (5ª ed). México, D.F.: Instituto de Geografía UNAM.
Gates, D. M. (1980). Solar Radiation. In Biophysical Ecology (pp. 96–147). New York, NY: Springer New York. doi: 10.1007/978-1-4612-6024-0_6 DOI: https://doi.org/10.1007/978-1-4612-6024-0_6
Gonsamo, A., D’odorico, P., & Pellikka, P. (2013). Measuring fractional forest canopy element cover and openness - definitions and methodologies revisited. Oikos, 122(9), 1283–1291. doi: 10.1111/j.1600-0706.2013.00369.x DOI: https://doi.org/10.1111/j.1600-0706.2013.00369.x
Gray, A. N., Spies, T. a, & Easter, M. J. (2002). Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Canadian Journal of Forest Research, 32(Tilman 1988), 332–343. doi: 10.1139/x01-200 DOI: https://doi.org/10.1139/x01-200
Hale, S. E., Edwards, C., Mason, W. L., Price, M., & Peace, A. (2009). Relationships between canopy transmittance and stand parameters in Sitka spruce and Scots pine stands in Britain. Forestry, 82(5), 503–513. doi: 10.1093/forestry/cpp020 DOI: https://doi.org/10.1093/forestry/cpp020
Hardy, J. P., Melloh, R., Koenig, G., Marks, D., Winstral, A., Pomeroy, J. W., & Link, T. (2004). Solar radiation transmission through conifer canopies. Agricultural and Forest Meteorology, 126(3–4), 257–270. doi: 10.1016/j.agrformet.2004.06.012 DOI: https://doi.org/10.1016/j.agrformet.2004.06.012
Hu, L., Yan, B., Wu, X., & Li, J. (2010). Calculation method for sunshine duration in canopy gaps and its application in analyzing gap light regimes. Forest Ecology and Management, 259(3), 350–359. DOI: https://doi.org/10.1016/j.foreco.2009.10.029
Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry, 72(1), 59–74. doi: 10.1093/forestry/72.1.59 DOI: https://doi.org/10.1093/forestry/72.1.59
Kopp, G., & Lean, J. L. (2011). A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, 38(1), 1–7. doi: 10.1029/2010GL045777 DOI: https://doi.org/10.1029/2010GL045777
Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant Physiological Ecology (2a ed). New York: Springer. DOI: https://doi.org/10.1007/978-0-387-78341-3
Larsen, D. R., & Kershaw, J. A. (1996). Influence of canopy structure assumptions on predictions from Beer’s law. A comparison of deterministic and stochastic simulations. Agricultural and Forest Meteorology. doi: 10.1016/0168-1923(95)02307-0 DOI: https://doi.org/10.1016/0168-1923(95)02307-0
Le Gouallec, J. L., Cornic, G., & Blanc, P. (1990). Relations betweensunfleck sequences and photoinhibition of photosynthesis in atropical rain-forest understorey herb. American Journal of Botany, 77, 999–1006. DOI: https://doi.org/10.1002/j.1537-2197.1990.tb13595.x
Leakey, A. D. B., Press, M. C., & Scholes, J. D. (2003). High-temperature inhibition of photosynthesis is greater under sun flecks than uniform irradiance in a tropical rain forest tree seedling. Plant, Cell and Environment, 26, 1681–1690. DOI: https://doi.org/10.1046/j.1365-3040.2003.01086.x
Leblanc, S. G., Chen, J. M., Fernandes, R., Deering, D. W., & Conley, A. (2005). Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agricultural and Forest Meteorology, 129(3–4), 187–207. DOI: https://doi.org/10.1016/j.agrformet.2004.09.006
Lhotka, J. M., & Loewenstein, E. F. (2006). Indirect measures for characterizing light along a gradient of mixed-hardwood riparian forest canopy structures. Forest Ecology and Management, 226(1–3), 310–318. doi: 10.1016/j.foreco.2006.01.043 DOI: https://doi.org/10.1016/j.foreco.2006.01.043
Lieffers, V. J., Messier, C., Stadt, K. J., Gendron, F., & Comeau, P. G. (1999). Predicting and managing light in the understory of boreal forests. Canadian Journal of Forest Research, 29(6), 796–811. doi: 10.1139/x98-165 DOI: https://doi.org/10.1139/x98-165
Ligot, G., Balandier, P., Courbaud, B., Jonard, M., Kneeshaw, D., & Claessens, H. (2014). Managing understory light to maintain a mixture of species with different shade tolerance. Forest Ecology and Management, 327. doi: 10.1016/j.foreco.2014.05.010 DOI: https://doi.org/10.1016/j.foreco.2014.05.010
López-Sandoval, J. A., López-Mata, L., Cruz-Cárdenas, G., Vibrans, H., Vargas, O., & Martínez, M. (2015). Modelado de los factores ambientales que determinan la distribución de especies sinantrópicas de Physalis. Botanical Sciences, 93(4), 755–764. doi: 10.17129/botsci.192 DOI: https://doi.org/10.17129/botsci.192
Macdonald, S. E., & Fenniak, T. E. (2007). Understory plant communities of boreal mixedwood forests in western Canada: Natural patterns and response to variable-retention harvesting. Forest Ecology and Management, 242(1), 34–48. doi: 10.1016/j.foreco.2007.01.029 DOI: https://doi.org/10.1016/j.foreco.2007.01.029
Marthews, T. R., Burslem, D. F. R. P., Phillips, R. T., & Mullins, C. E. (2008). Modelling Direct Radiation and Canopy Gap Regimes in Tropical Forests. Biotropica, 40(6), 676–685. DOI: https://doi.org/10.1111/j.1744-7429.2008.00431.x
Messier, C., Parent, S., & Bergeron, Y. (1998). Effects of Overstory and Understory Vegetation on the Understory Light Environment in Mixed Boreal Forests. Journal of Vegetation Science, 9(4), 511. doi: 10.2307/3237266 DOI: https://doi.org/10.2307/3237266
Monsi, M., & Saeki, T. (2005). On the Factor Light in Plant Communities and its Importance for Matter Production. Annals of Botany, 95(3), 549–567. doi: 10.1093/aob/mci052 DOI: https://doi.org/10.1093/aob/mci052
Muenchen, R. A., & Hilbe, J. M. (2010). Statistics and Computing R for Stata Users. Springer New York. DOI: https://doi.org/10.1007/978-1-4419-1318-0
Nackaerts, K., Coppin, P., Muys, B., & Hermy, M. (2000). Sampling methodology for LAI measurements with LAI-2000 in small forest stands. Agricultural and Forest Meteorology, 101(4), 247–250. doi: 10.1016/S0168-1923(00)00090-3 DOI: https://doi.org/10.1016/S0168-1923(00)00090-3
Nobis, M., & Hunziker, U. (2005). Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agricultural and Forest Meteorology, 128(3–4), 243–250. doi: 10.1016/j.agrformet.2004.10.002 DOI: https://doi.org/10.1016/j.agrformet.2004.10.002
Papaioannou, G., Nikolidakis, G., Asimakopoulus, D., & Retalis, D. (1996). Photosynthetically active radiation in Athens. Agricultural and Forest Meteorology, 81(1972), 287–298. DOI: https://doi.org/10.1016/0168-1923(95)02290-2
Pearcy, R. W., Krall, J. P., & Sassenrath-Cole, G. F. (1996). Photosynthesis in Fluctuating Light Environments. In N. R. Baker (Ed.), Photosynthesis and the Environment (pp. 321–346). The Netherlands: Kluwer Academic Publishers. DOI: https://doi.org/10.1007/0-306-48135-9_13
Pekin, B., & Macfarlane, C. (2009). Measurement of crown cover and leaf area index using digital cover photography and its application to remote sensing. Remote Sensing, 1(4), 1298–1320. doi: 10.3390/rs1041298 DOI: https://doi.org/10.3390/rs1041298
Pérez-Suárez, M., Fenn, M. E., Cetina-Alcalá, V. M., & Aldrete, A. (2008). The effects of canopy cover on throughfall and soil chemistry in two forest sites in the México City air basin. Atmosfera, 21(1), 83–100.
Promis, A., Schindler, D., Reif, A., & Cruz, G. (2009). Solar radiation transmission in and around canopy gaps in an uneven-aged Nothofagus betuloides forest. International Journal of Biometeorology, 53(4), 355–367. doi: 10.1007/s00484-009-0222-7 DOI: https://doi.org/10.1007/s00484-009-0222-7
Roberts, M. R., & Gilliam, F. S. (1995). Patterns and Mechanisms of Plant Diversity in Forested Ecosystems: Implications for Forest Management. Ecological Applications. doi: 10.2307/2269348 DOI: https://doi.org/10.2307/2269348
Sapkota, I. P., & Odén, P. C. (2009). Gap characteristics and their effects on regeneration, dominance and early growth of woody species. Journal of Plant Ecology, 2(1), 21–29. doi: 10.1093/jpe/rtp004 DOI: https://doi.org/10.1093/jpe/rtp004
Scanga, S. E. (2014). Population dynamics in canopy gaps: Nonlinear response to variable light regimes by an understory plant. Plant Ecology, 215(8), 927–935. doi: 10.1007/s11258-014-0344-9 DOI: https://doi.org/10.1007/s11258-014-0344-9
Schleppi, P., & Paquette, A. (2017). Hemispherical Photography in Forest Science: Theory, Methods, Applications. En R. A. Fournier & R. J. Hall (Eds.), Managing Forest Ecosystems (Vol. 28, pp. 15–53). Dordrecht, Netherlands: Springer. DOI: https://doi.org/10.1007/978-94-024-1098-3_2
Schreuder, H. T., Ernst, R., & Ramirez-Maldonado, H. (2004). Statistical Techniques for Sampling and Monitoring Natural Resources. Agriculture, RMRS-126(April), 111. Retrieved from http://www.treesearch.fs.fed.us/pubs/6287 DOI: https://doi.org/10.2737/RMRS-GTR-126
Seidel, D., Fleck, S., Leuschner, C., & Hammett, T. (2011). Review of ground-based methods to measure the distribution of biomass in forest canopies. Annals of Forest Science, 68(2), 225–244. doi: 10.1007/s13595-011-0040-z DOI: https://doi.org/10.1007/s13595-011-0040-z
Smith, F. W., Sampson, D. A., & Long, J. N. (1991). Comparison of Leaf Area Index Estimates from Tree Allometrics and Measured Light Interception. Forest Science, 37(6), 1682–1688.
Smith, W. K., & Berry, Z. C. (2013). Sunflecks ? Tree Physiology, (33), 233–237. doi: 10.1093/treephys/tpt005 DOI: https://doi.org/10.1093/treephys/tpt005
Sonohat, G., Balandier, P., & Ruchaud, F. (2004). Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests. Annals of Forest Science, 61(7), 629–641. DOI: https://doi.org/10.1051/forest:2004061
Ustin, S. L., Woodward, R. A., Barbour, M. G., & Hatfield, J. L. (1984). Relationships between sunfleck dynamics and red fir seedling distribution. Ecology, (65), 1420–1428. DOI: https://doi.org/10.2307/1939122
Velasco, S., Champo, O., España, M. L., & Baret, F. (2010). Estimación del índice de área foliar en la reserva de la Biósfera Mariposa Monarca. Revista Fitotecnia Mexicana, 33(2), 169–174. DOI: https://doi.org/10.35196/rfm.2010.2.169
Venables, W. D., & Smith, D. M. (2017). An Introduction to R. doi: 10.1016/B978-0-12-381308-4.00001-7 DOI: https://doi.org/10.1016/B978-0-12-381308-4.00001-7
Wagner, A., & McGraw, J. B. (2013). Sunfleck effects on physiology, growth, and local demography of American ginseng (Panax quinquefolius L.). Forest Ecology and Management, 291, 220–227. doi: 10.1016/j.foreco.2012.11.038 DOI: https://doi.org/10.1016/j.foreco.2012.11.038
Way, D. A., & Pearcy, R. W. (2012). Sunflecks in trees and forests: From photosynthetic physiology to global change biology. Tree Physiology, 32(9), 1066–1081. doi: 10.1093/treephys/tps064 DOI: https://doi.org/10.1093/treephys/tps064
Webster, C., Rutter, N., Zahner, F., & Jonas, T. (2016). Measurement of Incoming Radiation below Forest Canopies: A Comparison of Different Radiometer Configurations. Journal of Hydrometeorology, 17(3), 853–864. doi: 10.1175/JHM-D-15-0125.1 DOI: https://doi.org/10.1175/JHM-D-15-0125.1
Wong, S. L., Chen, C. W., Huang, H. W., & Weng, J. H. (2012). Using combined measurements for comparison of light induction of stomatal conductance electron transport rate and CO2 fixation in woody and fern species adapted to different light regimes. Tree Physiology, (32), 535–544. DOI: https://doi.org/10.1093/treephys/tps037
Yirdaw, E., & Luukkanen, O. (2004). Photosynthetically active radiation transmittance of forest plantation canopies in the Ethiopian highlands. Forest Ecology and Management, 188(1–3), 17–24. doi: 10.1016/j.foreco.2003.07.024 DOI: https://doi.org/10.1016/j.foreco.2003.07.024
Zhang, Y., Chen, J. M., & Miller, J. R. (2005). Determining digital hemispherical photograph exposure for leaf area index estimation. Agricultural and Forest Meteorology, 133, 166–181. DOI: https://doi.org/10.1016/j.agrformet.2005.09.009
Publicado
Cómo citar
-
Resumen1139
-
PDF392
-
LENS108
Número
Sección
Licencia
Madera y Bosques por Instituto de Ecología, A.C. se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.